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The 5 steps of Bayesian data analysis

In general, Bayesian analysis of data follows these steps:

1) Identify the relevant data

• Figure out which data matters for your research questions.

• What type of measurements do you have?

• Which variables are you trying to predict, and which ones help make those predictions?

2) Choose a model that describes the data

• Pick a mathematical model that makes sense for your data.

• The model and its settings should align with the goals of your analysis

• Bayesian estimation allows for a lot of �exibility in speci�cation e.g., binomial, gamma etc.
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The 5 steps of Bayesian data analysis

3) Set a prior belief about the parameters

• Before looking at the data, de�ne your initial assumptions.

• These assumptions should be reasonable and convincing to your audience (e.g., other scientists).

• Usually derived from other research on theory. (More on this later)

4) Update beliefs based on the data

• Use Bayesian methods to re�ne your understanding by combining your prior beliefs with new evidence.

• Interpret the updated results (posterior distribution) in a way that makes sense for your research.

5) Check if the model makes good predictions

• Compare the model's predictions to the actual data ("posterior predictive check") aka pp_check() .

• If it doesn't match well, consider tweaking the model or using a different one.

◦ We will do this analytically!

 See A Solomon Kurz extensive work on this matter.1
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Frequentist  vs Bayesian 



Why and when Bayesian?

 Why Use Bayesian Models?

• Frequentist vs. Bayesian: All frequentist models can be approximated by a Bayesian model, but not all Bayesian
models can be modeled in a frequentist way.

• Handle Complex Models: Fit more advanced models with temporal and spatial components or differential equations

(ODEs).

• Easier Interpretation: Sometimes more intuitive to understand and explain.

• Full Probability Distributions: Obtain a complete probability distribution for each parameter, making simulations and
calculations smoother.

• Use Prior Knowledge: Incorporate additional data, conclusions, or expectations with priors.

• Better Outlier Handling: Bayesian models can be more robust to extreme values by incorporating prior knowledge and
using heavy-tailed distributions.

Otherwise...

 When you have a lot of data, frequentist methods tend to perform well, as the law of large numbers ensures stable
parameter estimates without the need for priors.
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Kamala or Trump
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Kamala or Trump

You have been hired as a statistical consultant to determine whether Trump is leading in an election. The true
proportion of voters who support Trump is either 45% or 55%. Your tool to determine is polling...

You need to make a decision, and for a given choice, there is a payoff/loss you must consider. If you win, you get a big
of�ce in the new candidates cabinet, otherwise you are out. You get a quote and the price is $200 per person and they only
deal 5 respondents at a time ($1000). Your total budget is $4000. So your options is to poll 5, 10, ..., 20 people.

 Making a wrong decision is high, so you need to be quite con�dent, BUT polling is also costly, so you don't want to
spend more than you need to, to get your answer.

Lets see how a frequentist vs bayesian consultant would tackle this problem.
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Frequentist Approach

We start off by saying we need our con�dence to be at the α = 0.05 level and we are going to poll 5 people, so n = 5.

• Null Hypothesis ( H0 = 45%): Trump has 45% support.

• Alternative Hypothesis ( H1 > 45%): Trump has more than 45% support.

Suppose you survey 5 random voters and �nd that 2 of them support trump.

The probability of getting k = 2 or more supporters under the null hypothesis ( p = 0.45 ) is calculated as P-value:

P(k ≥ 2 ∣ n = 5, p = 0.45) = 1 − P(k = 0 ∣ n = 5, p = 0.45) − P(k = 1 ∣ n = 5, p = 0.45) 

P(k ≥ 2 ∣ n = 5, p = 0.45) = 1 − 0.0503 − 0.206 = 0.7437

This means 74.37% probability of observing at least 2 Trump supporters in a sample of 5 voters if his actual support is 45%.
Since this probability (p-value) is greater than the typical signi�cance level (0.05), we fail to reject the null hypothesis.

1- dbinom(0, 5, 0.45) - dbinom(1, 5, 0.45)

�� [1] 0.7437825
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Bayesian Approach

The Bayesian inference approach works differently from the frequentist approach.

• H1 = 45%, and H2 = 55%, so Trump has 45% or 55% support.

We assume equal priors, meaning we initially believe both hypotheses are equally likely: P(H1) = P(H2) = 0.5

Using the binomial probability mass function (PMF)  ( dbinom ), we calculate the Likelihood:

P(k = 2 ∣ H1) =
5

2
(0.45)2(1 − 0.45)3

= 10 × (0.45)2 × (0.55)3 ≈ 0.337

P(k = 2 ∣ H2) =
5

2
(0.55)2(1 − 0.55)3

= 10 × (0.55)2 × (0.45)3 ≈ 0.276

1

( )

( )

 Conventionally interpreted as the number of ‘successes’ in size trials.1
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Bayesian Approach

Once we have the Likelihood, we can calculate the Posterior Probabilities using Bayes' Theorem:

P(H1 ∣ k = 2) =
P(H1)P(k = 2 ∣ H1)

P(k = 2)

=
0.5 × 0.337

(0.5 × 0.337) + (0.5 × 0.276)

≈
0.145

0.145 + 0.165
=

0.17

0.31
≈ 0.55

P(H2 ∣ k = 2) = 1 − P(H1 ∣ k = 2) = 1 − 0.55 = 0.45

 Since these values are close, the Bayesian approach does not strongly favor either hypothesis with such a small sample
size! With equal priors and a low sample size, it is dif�cult to make a decision with a strong con�dence, given the observed
data. That said, H1 has a higher posterior probability than H2, so if we had to make a decision at this point, we should pick

H1.

• Note that this decision agrees with the decision based on the frequentist approach, but with much less con�dence.
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Conclusion

• As sample size increases ( N ), the Bayesian posterior probabilities, P(H ∣ D), shift more strongly toward the true
proportion.

• The Bayesian method updates beliefs dynamically, while frequentist inference only considers the probability under the

null hypothesis ( α ). This shows that the frequentist method is highly sensitive to the null hypothesis.

Observed Data Frequentist P(k or more ∣ 45% Trump) Bayesian P(45% Trump ∣ n, k) Bayesian P(55% Trump ∣ n, k)

n = 5, k = 2 0.7438 0.55 0.45

n = 10, k = 4 0.7340 0.60 0.40

n = 15, k = 6 0.7392 0.64 0.36

n = 20, k = 8 0.7480 0.69 0.31
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Importance to estimation of regression

In the �nal example we will be estimating the relationship between in�ation and unemployment (also known as the Philips
Curve) using the brms  package. Why is the previous example important for the upcoming example?

Frequentist:

• Frequentist methods do not incorporate prior beliefs about β (e.g., economic theory suggesting β < 0).

• Con�dence intervals rely on large samples; small samples may lead to unstable estimates.

• Estimates do not update as new data arrive and outliers can skew estimation through leverage effects.

Bayesian:

• The posterior mean of β balances the information from the prior and the data.

• As more data are observed, the posterior variance shrinks, meaning the estimate becomes more precise and we can
trust the estimation more. So uses credible instead of con�dence intervals

If we have large amounts of historical in�ation-unemployment data, Frequentist OLS regression works well. But if we have
limited data or want to incorporate prior economic knowledge, Bayesian estimation is a better choice. Bayesian methods
are more �exible and provides credibility intervals, while frequentist approach is simple.
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Terminology

Applied to parameters and data:

p(θ ∣ D)
⏟

posterior

=

p(θ)
⏟

prior

p(D ∣ θ)
⏟

likelihood

p(D)
⏟

evidence

As per Kruschke, 2015, pp. 106–107:

• The "prior", p(θ), is the credibility of the θ values without the data D.

• The "posterior" p(θ |D), is the credibility of θ values with the data D taken into account.

• The "likelihood" p(D | θ), is the probability that the data could be generated by the model with parameter value θ.

• The "evidence" (or "Marginal Probability") for the model, p(D), is the overall probability of the data according to the
model, determined by averaging across all possible parameter values weighted by the strength of belief in those

parameter values.

Lets see how these apply when we think about the relationship between in�ation and unemployment. NB - I leave out the
intercept for simplicity.
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beta_grid �� seq(-1, 1, length.out = 101)

prior �� dnorm(beta_grid, mean = 0, sd = 1)

prior �� prior / sum(prior)

df �� tibble(beta1 = beta_grid, prior = prior)

Normalise in the last step to ensure sum = 1:
P(β1 ∣ data) ∝ P(data ∣ β1)P(β1)

Terminology: Prior

Prior: I believe that the relationship between in�ation and employment is: π = β0 + 0 × unemployment.

We start with a prior belief that β1 = 0 with some uncertainty. We assume a normal prior β1 ∼ N(0, 0.12). Lets create a

discrete grid of candidate β1 values for illustration. We compute the corresponding density from the normal distribution,

and then normalize these values.
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likelihood �� dnorm(10, mean = 3.4 * beta_grid, sd = 

df �� df %>% mutate(likelihood = likelihood)

• Probability of observing in�ation = 10 for each
candidate β1.

Terminology: Likelihood

Likelihood: Now the �rst data point comes in and its unemployment = 3.4, in�ation = 10.

We now ask, what is the probability of in�ation being 10, given β1, modeled as a normal distribution with mean 3.4 × β1 and

σ = 1:

P(inflation = 10 ∣ β1) = dnorm(10, mean = 3.4 × β1, sd = 1)
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Terminology: Marginal Probability

Marginal Probability: The marginal probability is calculated by summing the product of the prior and the likelihood
over all candidate values of β1.

This step is important in normalizing the posterior:

P(D) = ∑
β1

Prior(β1) × Likelihood(β1)

Think of P(D) as a way of ensuring that after updating our beliefs with the likelihood ("Bayesian Thinking"), the resulting
posterior still follows the rules of probability. Without this normalization step, the posterior might not sum to 1 - which
would make it meaningless as a probability distribution.

marginal_probability �� sum(df$prior * df$likelihood)
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We compute this for each candidate β1 on our grid:

# Compute the posterior distribution using Bayes' rule
posterior �� (df$prior * df$likelihood) / 

  marginal_probability

df �� df %>% mutate(posterior = posterior)

Terminology: Posterior

And now for the �nal step:

p(θ ∣ D)
⏟

posterior

=

p(θ)
⏟

prior

p(D ∣ θ)
⏟

likelihood

p(D)
⏟

evidence
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date unemployment in�ation

2024-03-01 3.9 3.475131

2024-04-01 3.9 3.357731

2024-05-01 4.0 3.250210

2024-06-01 4.1 2.975629

2024-07-01 4.2 2.923566

2024-08-01 4.2 2.591227

2024-09-01 4.1 2.407513

2024-10-01 4.1 2.576326

2024-11-01 4.2 2.732579

2024-12-01 4.1 2.896593

Putting it to use: OLS vs Bayesian

How close are these models with 10 data points?
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Putting it to use: OLS vs Bayesian

How close are these models with 10 data points?

lm(inflation ~ unemployment -1, data = tail(economic_data, 10))

�� 

�� Call:

�� lm(formula = inflation ~ unemployment - 1, data = tail(economic_data, 

��     10))

�� 

�� Coefficients:

�� unemployment  

��       0.7132
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Putting it to use: OLS vs Bayesian

How close are these models with 10 data points?

We compute the likelihood for each observation and, assuming independent observations, multiply these together to get

the combined likelihood:

p(β1 ∣ data) ∝ p(β1) × ∏
i

p(inflationi ∣ β1, unemploymenti)

Where p(β1 ∣ data) is the posterior, p(β1) is the prior and p(inflationi ∣ β1, unemploymenti) is the likelihood. The product

notation ∏i indicates that we multiply the likelihoods across all data points i.

• Did you spot the ∝ ? In reality, the denominator p(D) is hard to compute as its the integral over all values. So instead
of calculating this directly, we work with the "proportionality" and later normalize if needed.

• We actually approximate the "Posterior" using Markov Chain Monte Carlo (MCMC). More on that later.

Can we get 0.7132 using just basic R and our new fancy method?
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Putting it to use: OLS vs Bayesian

First we calculate all the components:

df �� tail(economic_data, 10)

beta_grid �� seq(-1, 1, length.out = 101)

prior �� dnorm(beta_grid, mean = 0, sd = 1)

prior �� prior / sum(prior)

likelihood_function �� function(b1, df){prod(dnorm(df$inflation, mean = b1 * df$unemployment, sd = 1))}

likelihood �� map_dbl(beta_grid, likelihood_function, df = df)

posterior �� (prior * likelihood) / sum(prior * likelihood)

The posterior mean: ∑ β1 × p(β1 ∣ data), is computed as the Bayesian estimate of β1.

bayes_estimate �� sum(beta_grid * posterior)

cat("Bayesian estimate (posterior mean) for beta1�", bayes_estimate, "\n")

�� Bayesian estimate (posterior mean) for beta1� 0.7088872
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Markov Chain Monte Carlo



Understanding Markov Chain Monte Carlo

Metropolis and Ulam developed the Metropolis algorithm in the 1940s while working in chemistry and physics. Their clever
algorithm was designed to approximate integrals for problems in thermodynamics, speci�cally in statistical mechanics. The
primary goal was to solve problems involving marginal probabilities (a central concept in Bayesian statistics).

It would take about 40 years before statisticians discovered the Metropolis paper (under a somewhat obscure name) and

started realizing its potential applications in statistical sampling.

• 1940s: Metropolis and Ulam develop the Metropolis algorithm in physics to approximate integrals in thermodynamics.

• 40 years later: Statisticians discover the algorithm, but early computers lack the power to fully utilize it.

• Late 1980s-1990s: Advances in computational power and statistical theory lead to the creation of BUGS, a key software
for implementing MCMC methods.

• Result: The right combination of factors — theory, technology, and software — make MCMC a practical tool for statistics.

https://www.youtube.com/watch?v=072Q18nX91I
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Step 1: De�ne the States and Transition Matrix

states �� c("Sunny", "Rainy")

# Define the transition matrix (rows = current state, columns = next sta
trans_matrix �� matrix(c(0.8, 0.2,  # From Sunny: 0.8 to Sunny, 0.2 to R

0.3, 0.7), # From Rainy: 0.3 to Sunny, 0.7 to R
            nrow = 2, byrow = TRUE)

rownames(trans_matrix) �� states

colnames(trans_matrix) �� states

trans_matrix

Step 2: Simulate the chain

simulate_markov_chain �� function(trans_matrix, start_state, n_steps) {

  chain �� character(n_steps)

  chain[1] �� start_state

# Sample the next state based on the current state
for (i in 2:n_steps) {

    current_state �� chain[i - 1]

    chain[i] �� sample(states, size = 1, prob = trans_matrix[current_state

  }

return(chain)

}

set.seed(123)

simulate_markov_chain(trans_matrix, start_state = "Sunny"

Understanding (Markov Chain) Monte Carlo

We de�ne a two-state Markov chain with states "Sunny" and "Rainy" (imagine its not Cape Town). The key takeaway here is
that the probability of tomorrow's weather is dependent on today's weather (not on the sequence of events that preceded
it):

Cool little visualisation: https://willhipson.netlify.app/post/markov-sim/markov_chain/
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Understanding Markov Chain (Monte Carlo)

Monte Carlo is a method where we approximate an outcome1 and hopefully also the distribution thereof.

Imagine a portfolio of 100 loans (or debts) where each loan has a �xed probability of default (5%, p = 0.05).

Goal: Simulate many 10,000 scenarios to see, on average, how many defaults occur in the portfolio.

For each simulation:

• For each of the 100 loans, decide whether it defaults.

• Count the total defaults in that simulation.

• Repeat the process 10,000 times.

• Estimate the expected number of defaults by taking the average of the simulated default counts.
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Understanding Markov Chain (Monte Carlo)

In order to conduct this simulation we use our friend the Bernoulli trial (aka coin �ip):

set.seed(123)

n_simulations �� 10000

f �� function(x) {

  n_loans �� 100

  sum(rbinom(n_loans, size = 1, prob = 0.05))

}

# Run the Monte Carlo simulation
defaults �� map_dbl(1:n_simulations, f)

expected_defaults �� mean(defaults)

cat("Expected number of defaults:", expected_defaults, "\n")

head(defaults)
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Understanding Markov Chain Monte Carlo!

We are �nally there . Suppose you have a portfolio of 100 loans and you observe 5 defaults.

Under a simple model with a uniform prior for p (i.e. a Beta(1,1) prior), the likelihood is given by the Binomial probability.
With a uniform prior, the (unnormalized) posterior for pp is proportional to:

p5(1 − p)95

This is actually very convenient, setup because the Beta distribution is conjugate to the Binomial likelihood.

A prior and likelihood are conjugate if the resulting posterior distribution is of the same family as the prior.

Instead of integrating to �nd the posterior, we can just update the parameters directly:

Beta(α, β)
⏟

Prior

+ Binomial(x, n)
⏟

Likelihood

⇒ Beta(α + x, β + (n − x))
⏟

Posterior

Conjugacy is great when available, but for real-world Bayesian modeling, we often must use MCMC or other numerical

methods to estimate posterior distributions.
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For my own sanity (background math)

P(β1): A uniform prior on p, meaning P(p) is constant. P(D | β1): A Bernoulli likelihood based on observed defaults.

The posterior is: P(p ∣ D) ∝ P(D ∣ p)P(p)

If we observe k defaults out of n loans, the likelihood follows a Binomial distribution:

P(D ∣ p) = pk(1 − p)n− k

A uniform prior on p means:

P(p) = constant

By Bayes' theorem:

P(p ∣ D) ∝ P(D ∣ p)P(p)

Since P(p) is constant:

P(p ∣ D) ∝ pk(1 − p)n− k
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Since P(D) does not depend on β1, MCMC methods

sample from the unnormalized posterior:

P(β1 |D)

⏟
Posterior

∝ P(D | β1)

⏟
Likelihood

× P(β1)

⏟
Prior

So lets build a little MCMC sampler it for our default
example, where we have 100 loans and observed 5
defaults where:

posterior_density �� function(p) {

  n_loans �� 100

  observed_defaults �� 5

if (p < 0 �� p > 1) return(0)

return(p^observed_defaults * (1 - p)^(n_loans - observed_defaults)

}

metropolis_sampler_default �� function(initial, iterations, proposal_sd) {
  chain �� numeric(iterations)
  chain[1] �� initial

for (i in 2:iterations) {
    current �� chain[i - 1]

# Propose a new candidate by adding a small random jump
    candidate �� current + rnorm(1, mean = 0, sd = proposal_sd)

# If candidate is outside [0,1], reject it immediately
if (candidate < 0 �� candidate > 1) {

      chain[i] �� current
next

    }

# Compute the acceptance ratio using the unnormalized posterior densities
    ratio �� posterior_density(candidate) / posterior_density(current)

# Accept the candidate with probability min(1, ratio)
if (runif(1) < ratio) {

      chain[i] �� candidate
    } else {
      chain[i] �� current
    }
  }

return(chain)
}

Markov Chain Monte Carlo: Metropolis algorithm
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1) Draw X ∼ q( ⋅ ∣ X ( t−1 ) )

2) Compute

α(X ∣ X ( t−1 ) ) = min 1,
f(X) ⋅ q(X ( t−1 ) ∣ X)

f(X ( t−1 ) ) ⋅ q(X ∣ X ( t−1 ) )

3) If α(X > u, set X ( t ) = X, otherwise set X ( t ) = X ( t−1 ) .

Symbol Meaning

X Candidate state (proposed sample)

X ( t−1 ) Current state in the Markov chain

f(X)
Target distribution (the desired posterior or
density)

q(X ∣ X ( t−1 ) )
Proposal distribution (used to generate
candidate samples)

α(X ∣ X ( t−1 ) ) Acceptance probability

Markov Chain Monte Carlo: Metropolis algorithm

Starting with X ( 0 ) := (X ( 0 )
1 , …, X ( 0 )

p ) iterate for t = 1, 2, …, u ∼ U(0, 1).

{ }
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Markov Chain Monte Carlo: Metropolis algorithm

chain_defaults �� metropolis_sampler_default(initial = 0.15, 

                                             iterations = 10000, 

                                             proposal_sd = 0.02)

posterior_mean �� mean(chain_defaults)

posterior_sd   �� sd(chain_defaults)

cat("Posterior mean estimate for p:", posterior_mean, "\n")

�� Posterior mean estimate for p: 0.05947809

cat("Posterior standard deviation for p:", posterior_sd, "\n")

�� Posterior standard deviation for p: 0.0236256
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Setting Reasonable Priors Without Prior Knowledge

�. Use a Non-Informative (or Weakly Informative) Prior

◦ If you genuinely have no prior knowledge, choose a non-informative prior that spreads probability evenly across
all possible values.

◦ Example: A uniform prior (e.g., β ∼ Uniform( − 10, 10)) assumes all values are equally likely.

◦ Alternatively, use a weakly informative prior (e.g., β ∼ Normal(0, 5)) that assumes small effects are more likely than
extreme ones.

�. Leverage Historical Data or Expert Opinions

◦ If past studies suggest in�ation and GDP have a small but negative relationship, you could use
β ∼ Normal( − 0.5, 1).

◦ If expert opinions exist, incorporate them into your prior.

�. Use Empirical Priors (Data-Driven Approach)

◦ Collect past in�ation and GDP data and estimate a simple regression model.

◦ Use the estimates from this model as a starting point for your Bayesian priors.

◦ Example: If historical regression gives β ≈ − 0.3, set β ∼ Normal( − 0.3, 0.2).
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Setting Reasonable Priors Without Prior Knowledge

�. Perform Sensitivity Analysis

◦ Try different priors and check how much they affect the results.

◦ If results change drastically with different priors, that means your prior matters a lot, and you may need more data
or expert input.

�. Default to a Broad, Centered Prior

◦ If in doubt, a normal prior centered around zero is often reasonable (e.g., β ∼ Normal(0, 10)).

◦ This allows for both positive and negative relationships without being too restrictive.
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Practical



Bayesian Estimation of Philips Curve

The Phillips Curve describes the inverse relationship between in�ation and unemployment

We assume a simple linear relationship between in�ation ( πt ) and unemployment ( ut ):

πt = α + βut + ϵt

where:

• πt = In�ation rate at time t

• ut = Unemployment rate at time t

• α = Intercept (in�ation when unemployment is zero)

• β = Slope (effect of unemployment on in�ation, in most cases negative relationship)

• ϵt ∼ N(0, σ2) = Random error term, assumed to be normally distributed with mean 0 and variance σ2

This model suggests that in�ation is in�uenced by unemployment, where β represents the Phillips Curve effect. In most
situations β < 0 suggests an inverse relationship.
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lm_model �� lm(inflation ~ unemployment, data = economic_data)
summary(lm_model)

�� 
�� Call:
�� lm(formula = inflation ~ unemployment, data = economic_data)
�� 
�� Residuals:
��     Min      1Q  Median      3Q     Max 
�� -6.6151 -1.8978 -0.6297  0.9773 11.0083 
�� 
�� Coefficients:
��              Estimate Std. Error t value Pr(>|t|)    
�� (Intercept)   3.04248    0.32981   9.225   <2e-16 ���
�� unemployment  0.08595    0.05557   1.547    0.122    
�� ���
�� Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
�� 
�� Residual standard error: 2.885 on 922 degrees of freedom
�� Multiple R-squared:  0.002588,    Adjusted R-squared:  0.001506 
�� F-statistic: 2.392 on 1 and 922 DF,  p�value: 0.1223

lm_model_2000 �� lm(inflation ~ unemployment, data = economic_data %>% filter(date> 
summary(lm_model)

�� 
�� Call:
�� lm(formula = inflation ~ unemployment, data = economic_data)
�� 
�� Residuals:
��     Min      1Q  Median      3Q     Max 
�� -6.6151 -1.8978 -0.6297  0.9773 11.0083 
�� 
�� Coefficients:
��              Estimate Std. Error t value Pr(>|t|)    
�� (Intercept)   3.04248    0.32981   9.225   <2e-16 ���
�� unemployment  0.08595    0.05557   1.547    0.122    
�� ���
�� Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
�� 
�� Residual standard error: 2.885 on 922 degrees of freedom
�� Multiple R-squared:  0.002588,    Adjusted R-squared:  0.001506 
�� F-statistic: 2.392 on 1 and 922 DF,  p�value: 0.1223

Time for estimation: OLS

Lets start with the OLS estimation:
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Time for estimation: OLS
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Time for estimation: Bayesian

library(tidyverse)

library(bertheme) # Used for BER style Plots
library(brms)

library(bayesplot)

Our model speci�cation utilises weak priors:

Intercept ∼ N(3, 2)Slope (b) ∼ N( − 0.5, 0.5)Sigma ∼ Cauchy(0, 2)

In R the we do this by setting:

# Weakly Informative Priors
prior_weak �� c(

  prior(normal(3, 2), class = "Intercept"),

  prior(normal(-0.5, 0.5), class = "b"),

  prior(cauchy(0, 2), class = "sigma")

)
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Time for estimation: Bayesian

Next, lets estimate the model!

prior_weak �� c(

  prior(normal(3, 2), class = "Intercept"),

  prior(normal(-0.5, 0.5), class = "b"),

  prior(cauchy(0, 2), class = "sigma")

)

model_weak �� brm(inflation ~ unemployment, data = economic_data, 

                  family = gaussian(),

                  prior = prior_weak, 

                  iter = 100, # change in real�application
                  warmup = 50, # change in real�application 
                  chains = 4, 

                  cores = 4)

39 / 51



Time for estimation: Bayesian

��  Family: gaussian 

��   Links: mu = identity; sigma = identity 

�� Formula: inflation ~ unemployment 

��    Data: economic_data (Number of observations: 924) 

��   Draws: 4 chains, each with iter = 1000; warmup = 100; thin = 1;

��          total post�warmup draws = 3600

�� 

�� Population-Level Effects: 

��              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

�� Intercept        3.08      0.32     2.45     3.71 1.00     2036     1602

�� unemployment     0.08      0.06    -0.03     0.19 1.00     2007     1612

�� 

�� Family Specific Parameters: 

��       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

�� sigma     2.89      0.07     2.76     3.02 1.00     4633     2891

�� 

�� Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

�� and Tail_ESS are effective sample size measures, and Rhat is the potential

�� scale reduction factor on split chains (at convergence, Rhat = 1).
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color_scheme_set("mix�blue�pink") #bayesplot
parameters �� c("b_Intercept", "b_unemployment"

mcmc_trace(

  model_weak,

  pars = parameters,

  n_warmup = 300,

  facet_args = list(nrow = 2,

                    labeller = label_parsed)

) +

  facet_text(size = 15) +

  theme_minimal()

Time for estimation: Bayesian
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mcmc_dens_overlay(model_weak, pars = parameters) + 

  facet_text(size = 15) +

  theme_minimal()

Posterior density plot

The shape of the posterior distributions provides valuable insight into whether the MCMC chains have properly converged.
If the distributions align well, it suggests stability. However, if we observe a bimodal distribution (resembling a camel’s
ridge with two peaks), this may indicate issues with model speci�cation, such as poor priors, identi�ability problems, or

inadequate mixing of the chains.
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Gelman-Rubin diagnostics

The Gelman-Rubin diagnostic, also known as R̂ (R-hat) or the potential scale reduction factor, is a key metric for assessing
MCMC chain convergence. It evaluates whether independently initialized chains have converged to the same posterior
distribution.

The R̂ statistic is computed as the ratio of the average variance within each chain to the variance of the pooled samples
across all chains.

R̂ =

1

M
∑Mm= 1s

2
m

s2pooled

M is the number of chains, s2m is the variance within chain m, s2pooled is the variance of the pooled samples across all chains.

When the chains have fully converged, this ratio approaches 1. However, if R̂ > 1, it suggests that the chains have not yet
stabilized and further sampling may be needed.

√
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pp_check(model_weak, ndraws = 100)

Model �t

The posterior predictive check (PPC) is a valuable tool for assessing how well a model �ts the observed data. The core idea
behind PPCs is that if a model provides a good �t, the predicted values generated from the model should closely resemble
the actual data used for �tting.

To perform a PPC, we simulate multiple draws from the posterior predictive distribution—the distribution of the response

variable given the posterior estimates of the model parameters. By comparing these simulated values to the observed data,

we can visually and statistically evaluate potential discrepancies, helping to identify issues such as model misspeci�cation
or unaccounted

44 / 51

https://mc-stan.org/bayesplot/articles/graphical-ppcs.html
https://mc-stan.org/bayesplot/articles/graphical-ppcs.html


yrep �� model_weak %>%

  posterior_predict(draws = 500) 

ppc_stat(y = model_weak$data$inflation, 

        yrep = yrep) + 

        facet_text(size = 15) +

        theme_minimal()

Posterior prediction

In Bayesian statistics, the posterior prediction refers to the process of predicting new or future data, given the observed
data and the model parameters:

p(ynew ∣ data) = ∫p(ynew ∣ θ)p(θ ∣ data) dθ
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pp_check(model_weak, ndraws = 100) pp_check(model_weak_skew, ndraws = 100)

Better model speci�cation?

                  family = skew_normal(),

model_weak_skew �� brm(inflation ~ unemployment, data = economic_data, 

                  prior = prior_weak, iter = 1000, warmup = 50, chains = 4, cores = 4)
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Better model speci�cation?

The posterior predictive checks (PPCs) already give us insight into which model �ts the data better. In addition, brms
provides several functions for comparing different models. One useful function is add_criterion() , which allows you to
add model �t criteria to the model objects for a more detailed comparison.

To determine which model is better, we need to look at the elpd_loo (expected log pointwise predictive density) and looic

(leave-one-out cross-validation information criterion): (elpd_loo = higher values are better, looic = lower values are better)

model_weak �� add_criterion(model_weak, c("loo", "waic"))

model_weak_skew �� add_criterion(model_weak_skew, c("loo", "waic"))

comp_loo �� loo_compare(model_weak, model_weak_skew,

                        criterion = "loo")

print(comp_loo, simplify = FALSE, digits = 3)

��                 elpd_diff se_diff   elpd_loo  se_elpd_loo p_loo     se_p_loo  looic     se_looic 

�� model_weak_skew     0.000     0.000 -2188.830    28.953       5.244     0.762  4377.660    57.905

�� model_weak       -104.004    11.572 -2292.834    30.229       4.119     0.397  4585.669    60.457
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Choosing Priors: Three approaches

How does the prior impact the estimation?

Lets start off by saying: "I do not have strong prior knowledge, I will use weakly informative priors":

• Intercept ( α ): In�ation varies signi�cantly, but we expect it to be around 2-5% on average.
Prior: α ∼ N(3, 2)

• Slope ($\beta$): Economic theory suggests β should be negative (higher unemployment → lower in�ation).
Prior: β ∼ N( − 0.5, 0.5), allowing for uncertainty.

• Standard deviation ( σ ): In�ation �uctuations should be positive but not extreme.

Prior: σ ∼ Half-Cauchy(0, 2), ensuring positive values.

These priors re�ect our expectations while allowing �exibility for the data to update our beliefs.

What other kind of priors are available to us?
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Summary of priors

• Weak: Re�ect our expectations while allowing �exibility for the data to update our beliefs.

• Theory-Informed: Impose stronger economic constraints, reducing extreme posterior estimates.

• Non-Informative: Let the data entirely dictate the relationship

Comparison of Prior Distributions for Bayesian Phillips Curve Model

Parameter WeaklyInformative TheoryInformed NonInformative

Intercept ( `α` ) `N(3, 2)` `N(2, 1)` `N(0, 10)`

Slope ( `β` ) `N( − 0.5, 0.5)` `N( − 0.3, 0.2)` `N(0, 5)`

Standard Deviation ( `σ`) `Half-Cauchy(0, 2)` `Half-Cauchy(0, 1)` `Half-Cauchy(0, 5)`
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Visually, what have we done?
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Conclusion

• Frequentist vs. Bayesian: We explored the key differences, with Frequentists treating parameters as �xed and Bayesians
updating beliefs using prior information.

• Bayesian Thinking: Parameters are random variables and probability represents our degree of belief rather than long-

run frequencies.

• Markov Chain Monte Carlo (MCMC): We learned how MCMC methods, like the Metropolis algorithm, help sample from
complex posterior distributions.

• Hands-on Intuition: Using simple analogies (e.g., the loan defaults), we saw how Bayesian updating and MCMC work in
practice.

• BRMS for Practical Bayesian Modeling: We introduced BRMS as a powerful tool for implementing Bayesian regression
models, making Bayesian inference more accessible and computationally ef�cient.

 If you want to see the real power of brms , go to Andrew Heiss' website. The examples on hierachical modeling is
especially of interest. Actually, just ALL of this blogs is AMAZING and a real life wizard in visualisation .
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