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The 5 steps of Bayesian data analysis BT
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In general, Bayesian analysis of data follows these steps:
1) Identify the relevant data

e Figure out which data matters for your research questions.
e What type of measurements do you have?
e Which variables are you trying to predict, and which ones help make those predictions?

2) Choose a model that describes the data

e Pick a mathematical model that makes sense for your data.
e The model and its settings should align with the goals of your analysis
e Bayesian estimation allows for a lot of flexibility in specification e.g., binomial, gamma etc.
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The 5 steps of Bayesian data analysis § teton

UNIVERSITEIT

3) Set a prior belief about the parameters

e Before looking at the data, define your initial assumptions.
e These assumptions should be reasonable and convincing to your audience (e.g., other scientists).
e Usually derived from other research on theory. (More on this later)

4) Update beliefs based on the data

e Use Bayesian methods to refine your understanding by combining your prior beliefs with new evidence.
e Interpret the updated results (posterior distribution) in a way that makes sense for your research.

5) Check if the model makes good predictions

e Compare the model's predictions to the actual data ("posterior predictive check") aka pp_check() .
e If it doesn't match well, consider tweaking the model or using a different one.
o We will do this analytically!

T See A Solomon Kurz extensive work on this matter.
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Why and when Bayesian? (s
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s Why Use Bayesian Models?

e Frequentist vs. Bayesian: All frequentist models can be approximated by a Bayesian model, but not all Bayesian
models can be modeled in a frequentist way.

e Handle Complex Models: Fit more advanced models with temporal and spatial components or differential equations
(ODEs).

e Easier Interpretation: Sometimes more intuitive to understand and explain.

e Full Probability Distributions: Obtain a complete probability distribution for each parameter, making simulations and
calculations smoother.

e Use Prior Knowledge: Incorporate additional data, conclusions, or expectations with priors.

o Better Outlier Handling: Bayesian models can be more robust to extreme values by incorporating prior knowledge and
using heavy-tailed distributions.

Otherwise...

@ When you have a lot of data, frequentist methods tend to perform well, as the law of large numbers ensures stable
parameter estimates without the need for priors.
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You have been hired as a statistical consultant to determine whether Trump is leading in an election. The true
proportion of voters who support Trump is either 45% or 55%. Your tool to determine is polling...

You need to make a decision, and for a given choice, there is a payoff/loss you must consider. If you win, you get a big
office in the new candidates cabinet, otherwise you are out. You get a quote and the price is $200 per person and they only
deal 5 respondents at a time ($1000). Your total budget is $4000. So your options is to poll 5, 10, .., 20 people.

¢ Making a wrong decision is high, so you need to be quite confident, BUT polling is also costly, so you don't want to
spend more than you need to, to get your answer.

Lets see how a frequentist vs bayesian consultant would tackle this problem.
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Frequentist Approach { Sotepoes
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We start off by saying we need our confidence to be at the @ = 0.05 level and we are going to poll 5 people, so n = 5.

 Null Hypothesis ( H, = 45%): Trump has 45% support.
e Alternative Hypothesis ( H; > 45%): Trump has more than 45% support.

Suppose you survey 5 random voters and find that 2 of them support trump.

The probability of getting k = 2 or more supporters under the null hypothesis ( p = 0.45 ) is calculated as P-value:
P(k>2 | n=5p=045)=1-Pk=0 | n=5p=045)-Pk=1 | n=5,p=0.45)
P(k>2 | n=5,p=0.45) =1-0.0503 - 0.206 = 0.7437

This means 74.37% probability of observing at least 2 Trump supporters in a sample of 5 voters if his actual support is 45%.
Since this probability (p-value) is greater than the typical significance level (0.05), we fail to reject the null hypothesis.

1- dbinom(0®, 5, 0.45) - dbinom(1, 5, 0.45)

#H [1] 0.7437825
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Bayesian Approach it
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The Bayesian inference approach works differently from the frequentist approach.
e H, =45%, and H, = 55%, so Trump has 45% or 55% support.
We assume equal priors, meaning we initially believe both hypotheses are equally likely: P(H,) = P(H,) = 0.5

Using the binomial probability mass function (PMF)' (dbinom ), we calculate the Likelihood:

5

Pk=2 | H1)=(2

)(0.45)2(1 - 0.45)3
= 10 x (0.45)? x (0.55)> ~ 0.337

5
Pk=2 | H,) = (2 )(0.55)2(1 - 0.55)3

= 10 x (0.55)? x (0.45)> ~ 0.276
T Conventionally interpreted as the number of ‘successes’ in size trials.
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Bayesian Approach it
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Once we have the Likelihood, we can calculate the Posterior Probabilities using Bayes' Theorem:

P(H)P(k=2 | H,)
P(k = 2)

P(H, | k=2)=

0.5 x 0.337
(0.5 % 0.337) + (0.5 x 0.276)

0.145 0.17
"~ 0.145+0.165 0.31

~ 0.55
P(H, | k=2)=1-P(H, | k=2)=1-0.55= 0.45

£3 Since these values are close, the Bayesian approach does not strongly favor either hypothesis with such a small sample
size! With equal priors and a low sample size, it is difficult to make a decision with a strong confidence, given the observed
data. That said, H, has a higher posterior probability than H,, so if we had to make a decision at this point, we should pick

H,.

e Note that this decision agrees with the decision based on the frequentist approach, but with much less confidence.
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Conclusion (st
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e As sample size increases ( N ), the Bayesian posterior probabilities, P(H | D), shift more strongly toward the true
proportion.

e The Bayesian method updates beliefs dynamically, while frequentist inference only considers the probability under the
null hypothesis (). This shows that the frequentist method is highly sensitive to the null hypothesis.

Observed Data Frequentist P(k or more | 45% Trump) Bayesian P(45% Trump | n, k) Bayesian P(55% Trump | n, k)

n=>5k=2 0.7438 0.55 0.45
n=10,k=4 0.7340 0.60 0.40
n=15k=6 0.7392 0.64 0.36
n=20,k=8 0.7480 0.69 0.31
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Importance to estimation of regression (T

In the final example we will be estimating the relationship between inflation and unemployment (also known as the Philips
Curve) using the brms package. Why is the previous example important for the upcoming example?

Frequentist:

e Frequentist methods do not incorporate prior beliefs about 8 (e.g., economic theory suggesting p < 0).
e Confidence intervals rely on large samples; small samples may lead to unstable estimates.
e Estimates do not update as new data arrive and outliers can skew estimation through leverage effects.

Bayesian:

e The posterior mean of 8 balances the information from the prior and the data.
e As more data are observed, the posterior variance shrinks, meaning the estimate becomes more precise and we can
trust the estimation more. So uses credible instead of confidence intervals

If we have large amounts of historical inflation-unemployment data, Frequentist OLS regression works well. But if we have
limited data or want to incorporate prior economic knowledge, Bayesian estimation is a better choice. Bayesian methods
are more flexible and provides credibility intervals, while frequentist approach is simple.
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Applied to parameters and data:

p®pD | 6)
© | D) prTor likelﬁlood
p =
p(D)
pos;grior —
evidence

As per Kruschke, 2015, pp. 106-107:

e The "prior", p(0), is the credibility of the 6 values without the data D.

e The "posterior" p(6|D), is the credibility of 8 values with the data D taken into account.

e The "likelihood" p(D|0), is the probability that the data could be generated by the model with parameter value 6.

e The "evidence" (or "Marginal Probability") for the model, p(D), is the overall probability of the data according to the

model, determined by averaging across all possible parameter values weighted by the strength of belief in those
parameter values.

Lets see how these apply when we think about the relationship between inflation and unemployment. NB - | leave out the
Intercept for simplicity.
13151



Terminology: Prior
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Prior: | believe that the relationship between inflation and employment is: m = 8, + 0 x unemployment.

We start with a prior belief that ; = 0 with some uncertainty. We assume a normal prior ; ~ N(O, 0.1%). Lets create a
discrete grid of candidate 8, values for illustration. We compute the corresponding density from the normal distribution,
and then normalize these values.

Prior Distribution

beta_grid < seq(-1, 1, length.out = 101) B, ~ N(0.142)

0012

prior < dnorm(beta_grid, mean = 0, sd = 1)
prior < prior / sum(prior)
df < tibble(betal = beta_grid, prior = prior)

P(E’})

Normalise in the last step to ensure sum = 1:
P('Bl | data) o< P(data | ﬁl)P(lBl) 0.003

betal
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Terminology: Likelihood ) B
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Likelihood: Now the first data point comes in and its unemployment = 3.4, inflation = 10.

We now ask, what is the probability of inflation being 10, given B, modeled as a normal distribution with mean 3.4 x 8, and
o=1:

P(inflation = 10 | ;) = dnorm(10, mean = 3.4 x f3;,sd = 1)

Likelihood Function

likelihood ¢ dnorm(10, mean = 3.4 % beta_grid, sd Unemployment = 3.4, Inflation = 10

df « df %>% mutate(likelihood = likelihood)

e Probability of observing inflation = 10 for each 1e-10
candidate f3;.

p(|(data, B,))

Ue+lu

betal

1551
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Terminology: Marginal Probability § teton
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Marginal Probability: The marginal probability is calculated by summing the product of the prior and the likelihood
over all candidate values of ;.

This step is important in normalizing the posterior:

P(D) = ) Prior(8,) x Likelihood(8,)
By

Think of P(D) as a way of ensuring that after updating our beliefs with the likelihood ("Bayesian Thinking"), the resulting
posterior still follows the rules of probability. Without this normalization step, the posterior might not sum to 1 - which
would make it meaningless as a probability distribution.

marginal_probability <« sum(df$prior » df$likelihood)
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Terminology: Posterior &) pm
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And now for the final step:

p@)p(D | 6)
© | D) p;idor likelﬁlood
p =
p(D)
pos;grior —
evidence
We compute this for each candidate B, on our grid: Posieror Distriotion
Updating weak prior with the observed data

# Compute the posterior distribution using Bayes' r 04

posterior ¢« (df$prior * df$likelihood) /
marginal_probability

p(|(B,. data))

df « df %>% mutate(posterior = posterior)

betal
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Putting it to use: OLS vs Bayesian { St
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How close are these models with 10 data points?

date unemployment inflation .

2024-03-01 39 3475131 °

2024-04-071 39 3.357731 ¢

2024-05-01 4.0 3.250210 )

2024-06-01 41 2975629 g : ®
2024-07-01 42 2923566 o
2024-08-01 4.2 2.591227 ° o)
2024-09-01 41 2407513 ®

2024-10-01 41 2.576326 " emoyment J
2024-11-01 4.2 2732579

2024-12-01 41 2.896593

187751
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Putting It to use: OLS vs Bayesian | St
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How close are these models with 10 data points?

Im(inflation ~ unemployment -1, data = tail(economic_data, 10))

Call:
Im(formula = inflation ~ unemployment - 1, data = tail(economic_data,
10))

Coefficients:
unemployment
0.7132

TEHEREEHEY
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Putting It to use: OLS vs Bayesian | St
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How close are these models with 10 data points?

We compute the likelihood for each observation and, assuming independent observations, multiply these together to get
the combined likelihood:

p(B; | data) o p(f;) X H p(inflation; | f,, unemployment.)

1

Where p(B; | data) is the posterior, p(8,) is the prior and p(inflation; | f;, unemployment;) is the likelihood. The product
notation [J; indicates that we multiply the likelihoods across all data points i.

e Did you spot the « ?In reality, the denominator p(D) is hard to compute as its the integral over all values. So instead
of calculating this directly, we work with the "proportionality" and later normalize if needed.
e We actually approximate the "Posterior" using Markov Chain Monte Carlo (MCMC). More on that later.

Can we get 0.7132 using just basic R and our new fancy method?
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Putting it to use: OLS vs Bayesian R

First we calculate all the components:

df < tail(economic_data, 10)

beta_grid < seq(-1, 1, length.out = 101)
prior < dnorm(beta_grid, mean = 0, sd = 1)
prior < prior / sum(prior)

likelihood_function ¢« function(bl, df){prod(dnorm(df$inflation, mean = bl * df$unemployment, sd = 1))}
likelihood ¢« map_dbl(beta_grid, likelihood_function, df = df)
posterior ¢« (prior % likelihood) / sum(prior % likelihood)

The posterior mean: Y, x p(B; | data), is computed as the Bayesian estimate of f3;.

bayes_estimate ¢« sum(beta_grid * posterior)
cat("Bayesian estimate (posterior mean) for betal:", bayes_estimate, "\n")

## Bayesian estimate (posterior mean) for betal: 0.7088872
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Understanding Markov Chain Monte Carlo

Metropolis and Ulam developed the Metropolis algorithm in the 1940s while working in chemistry and physics. Their clever
algorithm was designed to approximate integrals for problems in thermodynamics, specifically in statistical mechanics. The
primary goal was to solve problems involving marginal probabilities (a central concept in Bayesian statistics).

It would take about 40 years before statisticians discovered the Metropolis paper (under a somewhat obscure name) and
started realizing its potential applications in statistical sampling.

e 1940s: Metropolis and Ulam develop the Metropolis algorithm in physics to approximate integrals in thermodynamics.
e 40 years later: Statisticians discover the algorithm, but early computers lack the power to fully utilize it.
e Late 1980s-1990s: Advances in computational power and statistical theory lead to the creation of BUGS, a key software

for implementing MCMC methods.
e Result: The right combination of factors — theory, technology, and software — make MCMC a practical tool for statistics.

https://www.youtube.com/watch?v=072Q18nX91l
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Understanding (Markov Chain) Monte Carlo { o
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We define a two-state Markov chain with states "Sunny" and "Rainy" (imagine its not Cape Town). The key takeaway here is
that the probability of tomorrow's weather is dependent on today's weather (not on the sequence of events that preceded

it):
Step 1: Define the States and Transition Matrix Step 2: Simulate the chain
states « c("Sunny", "Rainy") simulate_markov_chain ¢« function(trans matrix, start ste
chain « character(n_steps)
trans_matrix < matrix(c(0.8, 0.2, chain[1] <« start_state
0.3, 0.7),
nrow = 2, byrow = TRUE)
for (i in 2:n_steps) {
rownames(trans_matrix) <« states current_state ¢« chain[i - 1]
colnames(trans_matrix) <« states chain[i] ¢« sample(states, size = 1, prob = trans_mat
trans_matrix }

return(chain)

}

Cool little visualisation: https://willhipson.netlify.app/post/markov-sim/markov_chain/
set.seed(123)

simulate_markov_chain(trans_matrix, start_state = "Sunny"
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Understanding Markov Chain (Monte Carlo)

Monte Carlo is a method where we approximate an outcomel and hopefully also the distribution thereof.
Imagine a portfolio of 100 loans (or debts) where each loan has a fixed probability of default (5%, p = 0.05).
Goal: Simulate many 10,000 scenarios to see, on average, how many defaults occur in the portfolio.

For each simulation:

For each of the 100 loans, decide whether it defaults.

Count the total defaults in that simulation.

Repeat the process 10,000 times.

Estimate the expected number of defaults by taking the average of the simulated default counts.
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Understanding Markov Chain (Monte Carlo) (st

In order to conduct this simulation we use our friend the Bernoulli trial (aka coin flip):

set.seed(123)
n_simulations <« 10000

f « function(x) {
n_loans ¢« 100
sum(rbinom(n_loans, size = 1, prob = 0.05))

}

defaults <« map_dbl(1:n_simulations, f)

expected defaults <« mean(defaults)
cat("Expected number of defaults:", expected_defaults, "\n")
head(defaults)
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Understanding Markov Chain Monte Carlo! | e
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We are finally there (&% -. Suppose you have a portfolio of 100 loans and you observe 5 defaults.

Under a simple model with a uniform prior for p (i.e. a Beta(1,1) prior), the likelihood is given by the Binomial probability.
With a uniform prior, the (unnormalized) posterior for pp is proportional to:

p>(1-p)>
This is actually very convenient, setup because the Beta distribution is conjugate to the Binomial likelihood.

A prior and likelihood are conjugate if the resulting posterior distribution is of the same family as the prior.

Instead of integrating to find the posterior, we can just update the parameters directly:

Beta(a, ) + Binomial(x, n) = Beta(a + x, B + (n — x))

- -

Prior Likelihood Posterior

Conjugacy is great when available, but for real-world Bayesian modeling, we often must use MCMC or other numerical
methods to estimate posterior distributions.
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For my own sanity (background math) T
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P(B,): A uniform prior on p, meaning P(p) is constant. P(D|f,): A Bernoulli likelihood based on observed defaults.
The posterioris: P(p | D) « P(D | p)P(p)
If we observe k defaults out of n loans, the likelihood follows a Binomial distribution:
P(D | p)=pa-p""
A uniform prior on p means:

P(p) = constant

By Bayes' theorem:

P(p | D) « P(D | p)P(p)

Since P(p) is constant:

P(p | D) « p*a -p)"k
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Markov Chain Monte Carlo: Metropolis algorithm [

Since P(D) does not depend on f8;, MCMC methods metropolis sampler default « function(initial, iterations, proposal sd) {
sample from the unnormalized posterior: EEZiE[E n:mi;igieramm)
for (i in 2:iterations) {
P(ﬁ1|D) o P(D|Bl) x P(ﬁl) current ¢« chain[i - 1]
Pos;grior Likeﬁhood P;for candidate « current + rnorm(1, mean = 9, sd = proposal_sd)

So lets build a little MCMC sampler it for our default T (CERGERE = © ] CLIEEERS o S
chain[i] « current

example, where we have 100 loans and observed 5 next
}
defaults where:

ratio ¢« posterior _density(candidate) / posterior_density(current)
posterior_density <« function(p) {

n_loans <« 100 if (runif(1) < ratio) {

observed defaults < 5 chain[i] « candidate
} else {

if (p <0 |l p > 1) return(0) }chain[i] < current

return(p”observed defaults * (1 - p)*(n_loans - o }

return(chain)

}
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Markov Chain Monte Carlo: Metropolis algorithm

Starting with X(©):=x (9 .. x(Oy)jterate fort = 1,2, ..., u ~ U, 1).
1 p

1) Draw X ~ q(- | X( 1) Symbol Meaning
X Candidate state (proposed sample)
2) Compute
x (-1 Current state in the Markov chain
Ca(x (= 1) Target distribution (the desired posterior or
aX | X1y = min {1, 0 - at 0 fX) density)

Proposal distribution (used to generate

X X(t_l) .
qX | )candldatesampleS)

3) If a(X > u, set X(O) = X, otherwise set X (1) = x(t~1),

aX | Xx(t~1)) Acceptance probability
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Markov Chain Monte Carlo: Metropolis algorithm
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chain_defaults ¢« metropolis_sampler_default(initial = 0.15,
lterations = 10000,
proposal_sd = 0.02)

posterior _mean < mean(chain_defaults)
posterior_sd ¢« sd(chain_defaults)

cat("Posterior mean estimate for p:", posterior_mean, "\n")

# Posterior mean estimate for p: 0.05947809

cat("Posterior standard deviation for p:", posterior_sd, "\n")

## Posterior standard deviation for p: 0.0236256
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Setting Reasonable Priors Without Prior Knowledge &

1. Use a Non-Informative (or Weakly Informative) Prior

o If you genuinely have no prior knowledge, choose a non-informative prior that spreads probability evenly across
all possible values.

o Example: A uniform prior (e.g., B ~ Uniform( — 10, 10)) assumes all values are equally likely.

o Alternatively, use a weakly informative prior (e.g., B ~ Normal(0, 5)) that assumes small effects are more likely than
extreme ones.

2. Leverage Historical Data or Expert Opinions

o If past studies suggest inflation and GDP have a small but negative relationship, you could use
f ~ Normal( — 0.5, 1).
o If expert opinions exist, incorporate them into your prior.

3. Use Empirical Priors (Data-Driven Approach)

o Collect past inflation and GDP data and estimate a simple regression model.
o Use the estimates from this model as a starting point for your Bayesian priors.

o Example: If historical regression gives f ~ — 0.3, set B ~ Normal( — 0.3, 0.2).
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Setting Reasonable Priors Without Prior Knowledgef i
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1. Perform Sensitivity Analysis

o Try different priors and check how much they affect the results.
o If results change drastically with different priors, that means your prior matters a lot, and you may need more data
or expert input.

2. Default to a Broad, Centered Prior

o If in doubt, a normal prior centered around zero is often reasonable (e.g., B ~ Normal(0, 10)).
o This allows for both positive and negative relationships without being too restrictive.
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Bayesian Estimation of Philips Curve § teton
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The Phillips Curve describes the inverse relationship between inflation and unemployment
We assume a simple linear relationship between inflation ( 7, ) and unemployment ( u, ):
m,= o+ fu,+ €,

where:

n, = Inflation rate at time ¢

u, = Unemployment rate at time ¢

a = Intercept (inflation when unemployment is zero)

B = Slope (effect of unemployment on inflation, in most cases negative relationship)
2

e, ~ N(O, 0%) = Random error term, assumed to be normally distributed with mean 0 and variance o

This model suggests that inflation is influenced by unemployment, where B represents the Phillips Curve effect. In most
situations B < 0 suggests an inverse relationship.
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Time for estimation: OLS
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Lets start with the OLS estimation:

1m_model « Im(inflation ~ unemployment, data = economic_data)
summary(1lm_model)

HHt

# Call:

## Im(formula = inflation ~ unemployment, data = economic_data)
HHH

## Residuals:

HH Min 1Q Median 3Q Max

#Ht -6.6151 -1.8978 -0.6297 0.9773 11.060083

HHH

## Coefficients:

H Estimate Std. Error t value Pr(>|t])

# (Intercept) 3.04248 0.32981 9.225 <2e-16 **x

## unemployment 0.08595 0.05557 1.547 0.122

#:# —_

## Signif. codes: 0 '"**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1
HHH

## Residual standard error: 2.885 on 922 degrees of freedom

## Multiple R-squared: 0.002588, Adjusted R-squared: 0.001506
## F-statistic: 2.392 on 1 and 922 DF, p-value: 0.1223
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1m_model_2000 <« 1lm(inflation ~ unemployment, data = economic_data %>% filte
summary(1lm_model)

FHEEHEEEEHEEEEERERE

Call:
Im(formula = inflation ~ unemployment, data = economic_data)

Residuals:
Min 1Q Median 3Q Max
-6.6151 -1.8978 -0.6297 0.9773 11.0083

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.04248 0.32981 9.225 <2e-16 **x
unemployment 0.08595 0.05557 1.547 0.122

Signif. codes: 0 '**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' "1

Residual standard error: 2.885 on 922 degrees of freedom
Multiple R-squared: 0.002588, Adjusted R-squared: 0.001506
F-statistic: 2.392 on 1 and 922 DF, p-value: 0.1223
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Time for estimation: OLS ) e
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Inflation Rate vs. Unemployment Rate in US
From 1948 (Red), 2000 onwards (Black)

Inflation Rate (%)

10 15
Unemployment Rate (%)
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Time for estimation: Bayesian BT

library(tidyverse)
library(bertheme)
library(brms)
library(bayesplot)

Our model specification utilises weak priors:
Intercept ~ N(3, 2)Slope (b) ~ N( — 0.5, 0.5)Sigma ~ Cauchy(0, 2)

In R the we do this by setting:

prior weak ¢« c(

prior(normal(3, 2), class = "Intercept"),
prior(normal(-0.5, 0.5), class = "b"),
prior(cauchy(®, 2), class = "sigma")

)
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Time for estimation: Bayesian BT
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Next, lets estimate the model!

prior_weak ¢ c(

prior(normal(3, 2), class = "Intercept"),
prior(normal(-0.5, 0.5), class = "b"),
prior(cauchy(®, 2), class = "sigma")

)

model_weak <« brm(inflation ~ unemployment, data = economic_data,
family = gaussian(),
prior = prior_weak,
iter = 100,
warmup = 50,
chains = 4,
cores = 4)
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Time for estimation: Bayesian BT
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#H Family: gaussian

H Links: mu = identity; sigma = identity

#H Formula: inflation ~ unemployment

tH Data: economic_data (Number of observations: 924)

Ht Draws: 4 chains, each with 1ter = 1000; warmup = 100; thin = 1;

H total post-warmup draws = 3600

HH

## Population-Level Effects:

Ht Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS
#H Intercept 3.08 0.32 2.45 3.71 1.00 2036 1602
#H unemployment 0.08 0.06 -0.03 0.19 1.00 2007 1612
HH

#H Family Specific Parameters:

Ht Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS

#H sigma 2.89 0.07 2.76 3.02 1.00 4633 2891

HH

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

#H and Tail_ESS are effective sample size measures, and Rhat 1s the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Time for estimation: Bayesian
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_ _set("mix-blue-pink") #bayesplot
parameters ¢« c("b_Intercept", "b_unem

me
ploymen
ccccccccc (
model _weak,
pars = parameters,
n_warmup 300,
facet_args = list(nrow = 2
labell label _p d)
) +
facet_text (size = 15) +
h al()
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Posterior density plot ) S

The shape of the posterior distributions provides valuable insight into whether the MCMC chains have properly converged.
If the distributions align well, it suggests stability. However, if we observe a bimodal distribution (resembling a camel’s

ridge with two peaks), this may indicate issues with model specification, such as poor priors, identifiability problems, or
Inadequate mixing of the chains.

b Intercept

mcmc_dens_overlay(model weak, pars = paramete
facet text(size = 15) +
theme_minimal()

Chain
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Gelman-Rubin diagnostics N,

The Gelman-Rubin diagnostic, also known as R (R-hat) or the potential scale reduction factor, is a key metric for assessing
MCMC chain convergence. It evaluates whether independently initialized chains have converged to the same posterior
distribution.

The R statistic is computed as the ratio of the average variance within each chain to the variance of the pooled samples
across all chains.

1
oM 2
M Zm = 1Sm
2
Spooled

R =

2

booled Is the variance of the pooled samples across all chains.

M is the number of chains, sfn Is the variance within chain m, s

When the chains have fully converged, this ratio approaches 1. However, if R > 1, it suggests that the chains have not yet
stabilized and further sampling may be needed.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe  Hanjo Odendaal (Hanjo@sun.ac.za) 43 ] 51



M O d e l. ﬁ t &%] Ei%lég%;sch

The posterior predictive check (PPC) is a valuable tool for assessing how well a model fits the observed data. The core idea
behind PPCs is that if a model provides a good fit, the predicted values generated from the model should closely resemble

the actual data used for fitting.

To perform a PPC, we simulate multiple draws from the posterior predictive distribution—the distribution of the response
variable given the posterior estimates of the model parameters. By comparing these simulated values to the observed data,
we can visually and statistically evaluate potential discrepancies, helping to identify issues such as model misspecification

or unaccounted

pp_check(model _weak, ndraws = 100)

Yrep
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Posterior prediction st
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In Bayesian statistics, the posterior prediction refers to the process of predicting new or future data, given the observed
data and the model parameters:

p(ynew | data) :Ip()/new | e)p(e | data) de

yrep < model_weak %>%
posterior_predict(draws = 500)

ppc_stat(y = model _weak$data$inflation,

yrep = yrep) + T=:zﬁ
facet text(size = 15) +
theme_minimal() |
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Better model specification? { Soteponc
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family = skew_normal(),

pp_check(model _weak, ndraws = 100) pp_check(model weak_skew, ndraws = 100)

YVrep Vrep
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Better model specification? { Soteponc

The posterior predictive checks (PPCs) already give us insight into which model fits the data better. In addition, brms
provides several functions for comparing different models. One useful function is add_criterion(), which allows you to
add model fit criteria to the model objects for a more detailed comparison.

To determine which model is better, we need to look at the elpd_loo (expected log pointwise predictive density) and looic
(leave-one-out cross-validation information criterion): (elpd_loo = higher values are better, looic = lower values are better)

model weak ¢ add criterion(model weak, c("loo", "waic"))
model weak skew ¢ add criterion(model _weak skew, c("loo", "waic"))

comp_loo ¢« loo_compare(model weak, model_weak_ skew,
criterion = "loo")
print(comp_loo, simplify = FALSE, digits = 3)

Ht elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se _looic
## model weak skew 0.000 0.000 -2188.830 28.953 5.244 0.762 4377.660 57.905
## model weak -104.004 11.572 -2292.834 30.229 4,119 0.397 4585.669 60.457
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Choosing Priors: Three approaches O i

?2 How does the prior impact the estimation?
Lets start off by saying: "I do not have strong prior knowledge, | will use weakly informative priors":

e Intercept ( a ): Inflation varies significantly, but we expect it to be around 2-5% on average.
Prior: a ~ N(3, 2)

e Slope ($\beta$): Economic theory suggests B should be negative (higher unemployment = lower inflation).
Prior: B ~ N( - 0.5, 0.5), allowing for uncertainty.

e Standard deviation ( o ): Inflation fluctuations should be positive but not extreme.
Prior: 0 ~ Half-Cauchy(0, 2), ensuring positive values.

These priors reflect our expectations while allowing flexibility for the data to update our beliefs.

What other kind of priors are available to us?
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Summary of priors

o Weak: Reflect our expectations while allowing flexibility for the data to update our beliefs.
e Theory-Informed: Impose stronger economic constraints, reducing extreme posterior estimates.
e Non-Informative: Let the data entirely dictate the relationship

Comparison of Prior Distributions for Bayesian Phillips Curve Model

Parameter Weaklyinformative Theoryinformed Noninformative
Intercept (") N3, 2) N2, 1) "N(0, 10)
Slope () "N(-0.5,0.5) "N(-0.3,0.2) "N(0, 5)°

Standard Deviation ( 'o”) "Half-Cauchy(0, 2)" Half-Cauchy(0, 1)° "Half-Cauchy(0, 5)°

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe  Hanjo Odendaal (Hanjo@sun.ac.za)

(| Stellenbosch

UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

49 | 51



Stellenbosch

Visually, what have we done?

Alpha and Beta estimates Sigma estimates (very truncated)
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Conclusion (st
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e Frequentist vs. Bayesian: We explored the key differences, with Frequentists treating parameters as fixed and Bayesians
updating beliefs using prior information.

e Bayesian Thinking: Parameters are random variables and probability represents our degree of belief rather than long-
run frequencies.

e Markov Chain Monte Carlo (MCMC): We learned how MCMC methods, like the Metropolis algorithm, help sample from
complex posterior distributions.

e Hands-on Intuition: Using simple analogies (e.g., the loan defaults), we saw how Bayesian updating and MCMC work in
practice.

e BRMS for Practical Bayesian Modeling: We introduced BRMS as a powerful tool for implementing Bayesian regression
models, making Bayesian inference more accessible and computationally efficient.

If you want to see the real power of brms, go to Andrew Heiss' website. The examples on hierachical modeling is
especially of interest. Actually, just ALL of this blogs is AMAZING and a real life wizard in visualisation .
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