
Supervised ML

[Dr. Hanjo Odendaal]

• Focuses on understanding the relationship between input variables
(features) and output variables (responses).

◦ Supervised: Learning with labeled data (e.g., regression,
classi�cation).

◦ Unsupervised: Learning from unlabeled data (e.g., clustering,

dimensionality reduction).

• Key Techniques:

◦ Linear Methods (e.g., Linear Regression, Logistic Regression)

◦ Nonlinear Methods (e.g., Decision Trees, SVMs, Neural Networks)

◦ Model Assessment & Selection (e.g., Cross-Validation, Bias-
Variance Tradeoff)

◦ Ensemble Methods (e.g., Bagging, Boosting, Random Forests)

The bible of machine learning

2 / 39

Introduction to prediction problems

In statistical modeling and machine learning, the core goal is often predicting an outcome given inputs :

This can be unknown and complex (nonlinear, �exible) or speci�ed with assumptions (linear, parametric).

Classical statistics - ("Is different from zero?"):

• Focus on parameter estimation and inference.

• Models are often prescriptive: impose assumptions (e.g., linearity, normality).

Machine learning - "Can I predict accurately from ?":

• Focus on prediction accuracy rather than interpretability.

• Models are often descriptive or agnostic: �exible function �tting without strong assumptions.

y X

y ∼ f(X)

β

y X

3 / 39

• Bias: Error from wrong assumptions about
(e.g., assuming linear when it is nonlinear).

• Variance: Error from model sensitivity to training

data (e.g., over�tting).

• Irreducible error: Noise or randomness in yy that
no model can eliminate.

Introduction to prediction problems

In both classical statistics and machine learning, the ultimate goal is to �nd a good approximation to the unknown
true function . Prediction error can be decomposed into three parts:

f̂ (X)
f(X)

E [(y − f̂ (X))2] = [Bias(f̂ (X))]2


Systematic error

+ Variance(f̂ (X))
Model instability

+ Irreducible error
Noise in y

f(X)

4 / 39

• Bias: Error from wrong assumptions about
(e.g., assuming linear when it is nonlinear).

• Variance: Error from model sensitivity to training

data (e.g., over�tting).

• Irreducible error: Noise or randomness in yy that
no model can eliminate.

Simple models (high bias, low variance) vs �exible models
(low bias, high variance):

• Bias and variance are modelable - we can trade them off.

• Irreducible error is unmodelable - it sets a �oor on how

well any model can ever perform.

Tradeoff between under�tting and over�tting. Need
validation techniques (cross-validation, regularization).

Introduction to prediction problems

In both classical statistics and machine learning, the ultimate goal is to �nd a good approximation to the unknown
true function . Prediction error can be decomposed into three parts:

f̂ (X)
f(X)

E [(y − f̂ (X))2] = [Bias(f̂ (X))]2


Systematic error

+ Variance(f̂ (X))
Model instability

+ Irreducible error
Noise in y

f(X)

5 / 39

Regression

• Objective: Predict a continuous target (house price,
salary, GDP)

• Model:

• Loss Function (RMSE):

• Goal: Minimize prediction error on real-valued
outcomes

Classi�cation

• Objective: Predict a categorical target (Default, Customer
Cluster, Recession)

• Model (e.g., logistic):

• Loss Function (Log Loss):

• Goal: Maximize classi�cation accuracy or likelihood

Two types of problems

y ∈ R

y = f(X) + ε, with E[ε] = 0

RMSE =
⎷

n

∑
i=1

(yi − f̂ (Xi))21
n

y ∈ {1, 2, … , K}

P(y = 1 ∣ X) = σ(f(X)) =
1

1 + e−f(X)

−
n

∑
i=1

[yi log(p̂ i) + (1 − yi) log(1 − p̂ i)]
1
n

6 / 39

 Why does tuning matter?

• We've learned there's a trade-off between bias and
variance.

• Many models allow us to adjust this trade-off
using hyperparameters.

 What is a hyperparameter?

• A hyperparameter is a tuning knob - it controls

how �exible or stable the model is.

• It changes the behavior of the learner (the
algorithm itself).

• Not all models have hyperparameters:

◦ Example: Ordinary Least Squares (OLS) has no

tuning parameters.

◦ That's why this idea might seem new.

Example: Random Forest

• The Random Forest model has one key hyperparameter:

• Small mtry :

◦ More randomness across trees

◦ Higher variance in splits

◦ Lower correlation between trees → better averaging

• Large mtry :

◦ Trees become more similar

◦ Lower variance per tree, but higher correlation
across the forest

• The best value of mtry lies somewhere in between... but
how do we choose mtry ?

Hyperparameter tuning and the Bias–Variance Trade-Off

mtry = number of features considered at each split

7 / 39

Cross-validation

That’s where cross-validation comes in - it helps us estimate which value gives the best generalization.

Why do we need resampling?

• Training error often underestimates the true error.

• A model that performs well on training data may not generalize to new data.

• We need a method to assess performance reliably on unseen data.

K-fold Cross-Validation:

• Split data into equal-sized folds

• For each fold :

◦ Fit model on folds

◦ Evaluate on the -th fold

• Get test errors:

• Average them:

k

i = 1, … , k

k − 1
i

k ε1, … , εk

CV(k) = ∑k
i=1 εi

1
k

8 / 39

Cross-validation

https://medium.com/@ompramod9921/cross-validation-623620ff84c2

9 / 39

https://medium.com/@ompramod9921/cross-validation-623620ff84c2
https://medium.com/@ompramod9921/cross-validation-623620ff84c2

library(tidymodels)
library(ranger)

mtry �� c(2, 3, 4)
split �� initial_split(penguins, prop = 0.7) # Split the dataset
train �� training(split) # Training set
test �� testing(split) # Test set
penguins_cv �� vfold_cv(penguins, v = 10)

pred_penguin �� function(k){

 run_penguin �� function(df){
 training �� analysis(df)
 testing �� assessment(df)
 fit �� ranger(species ~ ., mtry = k, data = training, num.trees =
 probs �� predict(fit, testing)$predictions

 testing_probs �� testing %>%
 select(species) %>%
 bind_cols(as_tibble(probs))

 bind_rows(
 f_meas(testing_probs, truth = species, estimate = value),
 mcc(testing_probs, truth = species, estimate = value),
 kap(testing_probs, truth = species, estimate = value)
)
 }

 penguins_cv %>% mutate(res = map(splits, run_penguin)) %>%
 select(�splits) %>%
 mutate(k = k, .before = 1)

Hyperparameter tuning

10 / 39

Algo friends ⚒

Introduction to all the algo friends

We will not dive into deep learning yet. Start with linear models and trees, gradually build to more complex ensemble
methods.

Linear Methods:

• Assume a linear relationship between inputs and outputs: OLS, Lasso, Ridge

Tree-Based Methods:

• Partition the input space into regions and �t simple models locally: CART, RF and Boosting

Support Vector Machines (SVMs):

• Find hyperplanes that best separate classes with maximum margin. Powerful for both linear and nonlinear
classi�cation.

All of these models are going to need hyperparameter tuning. More on this later.

12 / 39

Regularization (Elastic Band)

Ridge regression (Elastic Band): You want a good �t, but you're penalised for large coef�cients. You're trying to �t the best
line, but each slope (coef�cient) is tied to zero with a rubber band. The more you stretch a beta, the more the rubber band
pulls back.

Keep everything, just shrink it toward average.

For Ridge Regression, we have to solve an optimization objective (Closed-form):

• The �rst term is just Ordinary Least Squares: make predictions close to the observed data.

• The second term is the penalty: the sum of squares of the coef�cients:

• → no rubber band → pure OLS

• → strong pull → coef�cients shrink closer to zero

β̂ridge = arg min
β

n

∑
i=1

(yi − X⊤
i β)2


fit to data

+ λ

p

∑
j=1

β2
j


rubber band penalty

ℓ2

λ = 0
λ = 10

13 / 39

Regularization (Fly Trap)

Lasso regression (Fly Trap): You want to only keep those coef�cients that have something to offer. Little pushes don't move
the coef�cient - it gets stuck at zero. But big, important ones break free.

Instead of a rubber band, the coef�cient is moving on a �y trap.

• Still a trade-off between �t and simplicity

• But now the penalty is the norm - the sum of absolute values

 Why is it "sticky"?

• The absolute value has a kink at 0 (non-differentiable).

• This is why Lasso can perform variable selection

◦ It doesn't just shrink, it zeros out

β̂lasso = arg min
β

n

∑
i=1

(yi − X⊤
i β)2


fit to data

+ λ

p

∑
j=1

|βj|


FlyTrap penalty

ℓ1

14 / 39

Elastic Nets: Fly Trap + Rubber Band

Elastic Net combines Lasso and Ridge penalties:

It's like a �y trap with rubber bands. Some coef�cients stick (Lasso), others stretch gently (Ridge).

(1) In high-dimensional settings (), Lasso can behave erratically and (2) If predictors are highly correlated, Lasso
tends to pick one and ignore the others.

• : overall penalty strength

• : balance between Ridge and Lasso

◦ : pure Lasso, : pure Ridge, : Elastic Net blend

p > n

β̂EN = arg min
β

n

∑
i=1

(yi − X⊤
i β)2


fit to data

+ λ

⎡⎢⎢⎢⎢⎢⎢⎣
(1 − α)

p

∑
j=1

β2
j


Rubber Band

+ α

p

∑
j=1

|βj|


Fly Trap

⎤⎥⎥⎥⎥⎥⎥⎦
λ

α ∈ [0, 1]
α = 1 α = 0 0 < α < 1

15 / 39

In 2D (), the level sets (i.e., constant-value slices) of this quadratic

function are ellipses. For OLS, loss is a quadratic bowl in -space -
shaped like a paraboloid. If you slice the bowl horizontally, you get
elliptical contours. The center of the ellipses is the OLS solution
(unpenalized), where loss is minimized.

 controls the size of the diamond (or circle for Ridge). So it's not that the
diamond is pushing into the ellipses, we are sliding larger and larger

ellipses outward until we hit the constraint. Better �t, more �exibility
(small , large diamond) vs. Simple, worse �t (large , small diamond)

Fly Trap vs Rubber Band (Intuition)

The OLS loss function is:

β̂OLS = arg min
β

n

∑
i=1

(yi − X⊤
i β)2


fit to data

β1, β2

β

λ

λ λ

16 / 39

Fly Trap vs Rubber Band

https://medium.com/data-science/from-linear-regression-to-ridge-regression-the-lasso-and-the-elastic-net-4eaecaf5f7e6

17 / 39

https://medium.com/data-science/from-linear-regression-to-ridge-regression-the-lasso-and-the-elastic-net-4eaecaf5f7e6
https://medium.com/data-science/from-linear-regression-to-ridge-regression-the-lasso-and-the-elastic-net-4eaecaf5f7e6

Ridge = Gaussian Prior

• Ridge regression adds an penalty:

• Bayesian view: This is equivalent to assuming

Coef�cients are likely to be small, but can be nonzero.

Gaussian prior → smooth penalty → no sparsity.

Lasso = Laplace Prior

• Lasso regression adds an penalty:

• Bayesian view: This is equivalent to assuming

Coef�cients are expected to be close to zero, but the prior

has sharp peaks → pushes many . Laplace prior

encourages sparsity.

Comparison with Bayesian

ℓ2

λ

p

∑
j=1

β2
j

βj ∼ N (0, τ 2)

ℓ1

λ

p

∑
j=1

|βj|

βj ∼ Laplace(0, b)

βj = 0

18 / 39

Tree methods

What is a decision tree (CART) ?

A decision tree is a recursive partitioning method:

• Splits the input space into rectangular regions

• Makes piecewise constant predictions within each region

How Does It Work?

�. Find the best feature and split-point that reduce prediction error (e.g., squared error for regression).
�. Recursively repeat the split within each sub-region.

�. Stop splitting based on a stopping rule (e.g., minimum leaf size or depth).

Properties

• Non-parametric: no assumptions about

• Captures interactions and nonlinearities

• Easy to visualize and interpret

• But: high variance if grown too deep

X

f(X)

19 / 39

Tree methods

Below we show an example of a CART tree making a prediction on whether someone will use a coupon:

https://bradleyboehmke.github.io/HOML/images/exemplar-decision-tree.png

20 / 39

https://bradleyboehmke.github.io/HOML/images/exemplar-decision-tree.png
https://bradleyboehmke.github.io/HOML/images/exemplar-decision-tree.png

Bagging (Bootstrap Aggregating): Random Forest

• Train multiple models on
bootstrap samples from the data.

• Final prediction:

• Reduces variance, models are independent, no
interaction or adaptation between models

Many weak models trained in parallel, then
averaged to stabilize.

Boosting: GBM/XGBoost

• Models are trained sequentially to focus on the errors of
the previous ones.

• At each step , we �t:

• Reduces bias, learners adapt to previous errors, can
over�t if not regularized

Each new model corrects the last - like a student
revising mistakes

Bagging vs Boosting

f̂ 1, f̂ 2, … , f̂ M

f̂ bag(x) =
M

∑
m=1

f̂ m(x)
1

M

m

f̂ m(x) = arg min
f

n

∑
i=1

L (yi, f̂ m−1(xi) + f(xi))

f̂ boost(x) =
M

∑
m=1

γmf̂ m(x)

21 / 39

�. For to (number of trees):

◦ Draw a bootstrap sample from the training
data.

◦ Grow a decision tree :

▪ At each split, randomly select
predictors.

▪ Choose the best split from those.

▪ Grow the tree fully (no pruning).

�. Final prediction:

◦ Regression: average predictions

◦ Classi�cation: majority vote

 Tuning & Evaluation

Key hyperparameters:

• : number of trees

• : number of predictors sampled at each split

• Node size / max depth

Out-of-Bag (OOB) Error:

• Each tree is built on a bootstrap sample (≈63% of data).

• The remaining ~37% is OOB data - used as a built-in

validation set.

• Compute prediction error on OOB samples.

Random Forest

m = 1 M

f̂ m(x)
mtry

f̂ RF(x) =
M

∑
m=1

f̂ m(x)
1

M

M

mtry

22 / 39

Random Forest (OOB)

OOB error vs number of trees → check convergence

23 / 39

Random Forest (Variable Importance)

Variable importance plots

https://ema.drwhy.ai/featureImportance.html

24 / 39

https://ema.drwhy.ai/featureImportance.html
https://ema.drwhy.ai/featureImportance.html

Random Forest (Dependence Plots)

There is a whole science in "Explainable ML" or XAI, but for now, only focus on: Partial dependence plots (for
interpretation). Go here https://christophm.github.io/interpretable-ml-book/overview.html#agnostic

https://sethdobson.netlify.app/2019/08/08/in-search-of-the-perfect-partial-plot/

25 / 39

https://christophm.github.io/interpretable-ml-book/overview.html#agnostic
https://christophm.github.io/interpretable-ml-book/overview.html#agnostic
https://sethdobson.netlify.app/2019/08/08/in-search-of-the-perfect-partial-plot/
https://sethdobson.netlify.app/2019/08/08/in-search-of-the-perfect-partial-plot/

• Gradient descent is an algorithm to minimize loss
functions. It works by taking steps in the direction
of the negative gradient of the loss:

• In boosting, we apply this idea functionally: each

learner is a step in gradient space!

We take the derivative of the loss with respect to the
prediction (with and):

• The gradient is -2. That means if you increase your
prediction, the loss will go down. The model is
underpredicting - the gradient tells you how to shift it.

Gradient Boosting Model

θ(t+1) = θ(t) − η ⋅ ∇θL(θ(t))

ŷ y = 3 ŷ = 2

= (y − ŷ)2 = −2(y − ŷ)
∂L

∂ŷ

∂
∂ŷ

= −2(3 − 2) = −2
∂L

∂ŷ

26 / 39

• Gradient descent is an algorithm to minimize loss
functions.

• It works by taking steps in the direction of the
negative gradient of the loss:

• In boosting, we apply this idea functionally: each

learner is a step in gradient space!

GBMs build an additive model:

where each is �t to the negative gradient of the
loss function at step .

 Tuning & Evaluation

• You can use any differentiable loss function:

◦ Squared error (regression)

◦ Log loss (classi�cation)

◦ Huber loss (robust regression)

Key hyperparameters:

• : number of boosting iterations (trees)

• : learning rate (step size for each update)

• : depth of each tree (controls complexity)

• : fraction of data used for each boosting
round

GBMs are very �exible but sensitive to tuning.
Small learning rate + more trees = often better

generalization.

Gradient Boosting Model

θ(t+1) = θ(t) − η ⋅ ∇θL(θ(t))

f̂ (x) =
M

∑
m=1

γmhm(x)

hm(x)
m

M

η

max depth
subsample

27 / 39

Extreme Gradient Boosting Model

• XGBoost is an ef�cient, regularized implementation of gradient boosting. It uses second-order optimization: both
gradients and Hessians (curvature). At each boosting step, it �ts a tree to the negative gradient:

• Each tree is chosen to minimize a regularized objective:

where penalizes tree complexity (depth, leaf weight, etc.)

gi = , hi =
∂L(yi, ŷ i)

∂ŷ i

∂2L(yi, ŷ i)

∂ŷ
2
i

L(t) =
n

∑
i=1

[gift(xi) + hift(xi)2] + Ω(ft)
1
2

Ω(ft)

28 / 39

Extreme Gradient Boosting Model

 Tuning & Features

• XGBoost supports all GBM hyperparameters, plus:

Additional hyperparameters:

Parameter Helps Control Risk if Too Low Risk if Too High

lambda Over�tting Under�t May oversmooth

gamma Complexity Noisy, deep trees No splits, under�t

subsample Variance Over�t Underutilized data

colsample_bytree Tree diversity Over�t Misses key features

But actually there is a reason why it has EXTREME in the names: https://xgboost.readthedocs.io/en/stable/parameter.html

29 / 39

https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

SVMs are classi�ers that �nd the maximum-margin
hyperplane to separate classes in feature space. The
goal: Maximize the distance between the decision
boundary and the nearest points from each class. The

decision function:

is chosen such that the margin is maximized and

misclassi�cations are minimized.

• With kernel tricks, SVMs can separate non-linear
data by implicitly mapping inputs into higher-
dimensional space.

 Tuning & Evaluation

Key hyperparameters:

• C : penalty for misclassi�cation

◦ Small → wider margin, more tolerance for
misclassi�cation

◦ Large → tight margin, low tolerance

• kernel : transformation function (linear, RBF, poly).
Enables non-linear separation

• gamma : controls how far in�uence of a point reaches (in

RBF kernel)

◦ Low → smoother boundary

◦ High → tightly �t to training data

Support Vector Machines (SVM)

f(x) = w⊤x + b
C

C

γ

γ

30 / 39

• Random Forests have several important
hyperparameters, but two main ones are:

◦ Number of features at each split (mtry)

◦ Minimum node size / max depth (min_n)

• Instead of using grid or random search, we can
apply Bayesian Optimization to ef�ciently search

for the best settings. Bayesian Optimization builds
a model of performance vs. parameter settings*,
and uses it to select promising values.

• This is especially useful when:

◦ Evaluating the model is costly (e.g., cross-
validation)

◦ The search space is continuous or mixed

 Search Space (RF)

• mtry : integer between 1 and (number of features)

• min_samples_leaf : integer (e.g., 1–20)

 Bayesian Optimizer Flow

�. Evaluate a few random points
�. Fit a surrogate model of the performance surface
�. Use an acquisition function to pick next point

�. Iterate until convergence

Ef�ciently balances exploration and exploitation.
Often outperforms grid search with far fewer
evaluations.

Tuning Random Forests via Bayesian Optimization

p

31 / 39

Practical

Tidymodels

library(tidymodels)

penguins �� penguins %>% drop_na()

set.seed(123)

penguin_split �� initial_split(penguins, strata = species)

penguin_train �� training(penguin_split)

penguin_folds �� vfold_cv(penguin_train, v = 5)

• Feature engineering

penguin_rec �� recipe(species ~ ., data = penguin_train) %>%

 step_normalize(all_numeric_predictors())

• Model

penguin_model �� rand_forest(mtry = tune(), min_n = tune(), trees = 100) %>% set_engine("ranger") %>%

 set_mode("classification")

33 / 39

Tidymodels: Classic tuning

• Work�ow

penguin_wf �� workflow() %>%

 add_model(penguin_model) %>%

 add_recipe(penguin_rec)

param_final ��

 extract_parameter_set_dials(penguin_model) %>%

 finalize(penguin_train)

• Normal tuning

set.seed(123)

grid_vals �� grid_regular(param_final, levels = 5) # or grid_random() for random search
penguin_grid �� tune_grid(

 penguin_wf,

 resamples = penguin_folds,

 grid = grid_vals,

 metrics = metric_set(accuracy),

 control = control_grid(save_pred = TRUE)

)
34 / 39

penguin_bayes �� tune_bayes(

 penguin_wf,

 resamples = penguin_folds,

 param_info = param_final,

 metrics = metric_set(accuracy),

 initial = 5,

 iter = 20,

 control = control_bayes(verbose = TRUE,

 no_improve = 5)

)

penguin_grid %>% show_best(metric = "accuracy", n = 1)

mtry min_n .metric .estimator mean n std_err .config
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 1 2 accuracy multiclass 0.992 5 0.00495 Preprocessor1_Model01

penguin_bayes %>% show_best(metric = "accuracy", n = 1)

mtry min_n .metric .estimator mean n std_err .config .ite
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr> <in
1 1 11 accuracy multiclass 0.992 5 0.00495 Preprocessor1_Model1

Tidymodels: Bayesian tuning

35 / 39

Tidymodels

final_model �� penguin_bayes %>% select_best(metric = "accuracy") %>% finalize_workflow(penguin_wf, .) %>%

 fit(data = penguin_train)

══ Workflow [trained] ══
Preprocessor: Recipe
Model: rand_forest()

── Preprocessor ──
1 Recipe Step

• step_normalize()

── Model ───
Ranger result

Call:
ranger��ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~1L, x), num.trees = ~100, min.node.size = min_rows(~11L, x), num.threads = 1, verbose = FALSE, se

Type: Probability estimation
Number of trees: 100
Sample size: 249
Number of independent variables: 6
Mtry: 1
Target node size: 11
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.037959

36 / 39

final_model %>% extract_fit_parsnip()

final_model %>%

 extract_fit_parsnip() %>%

 pluck("fit")

imp_tbl �� as.data.frame(rf$importance) %>%

 rownames_to_column("variable")

ggplot(imp_tbl, aes(x = reorder(variable, MeanDecreaseGini), y = Mea

 geom_col(fill = "steelblue") +

 coord_flip() +

 labs(

 title = "Variable Importance (Gini)",

 x = "Variable",

 y = "Mean Decrease in Gini"

) +

 theme_minimal()

class_imp �� imp_tbl %>%

 pivot_longer(cols = c(Adelie, Chinstrap, Gentoo), names_to =

ggplot(class_imp, aes(x = reorder(variable, importance), y = importance))

 geom_col(fill = "darkgreen") +

 coord_flip() +

 facet_wrap(~ class, scales = "free_y") +

 labs(

 title = "Class-Specific Variable Importance",

 x = "Variable",

 y = "Importance"

) +

 theme_minimal()

Tidymodels: Variable Importance

37 / 39

Tidymodels: Xbgoost

penguin_model �� boost_tree(

 trees = 100, # number of boosting iterations
 tree_depth = tune(), # max depth of a tree
 learn_rate = tune(), # shrinkage (eta)
 loss_reduction = tune(), # min split gain (gamma)
 sample_size = tune(), # row subsampling
 mtry = tune() # colsample_bytree
) %>%

 set_engine("xgboost") %>%

 set_mode("classification")

penguin_rec �� recipe(species ~ ., data = penguin_train) %>%

 step_dummy(all_nominal_predictors()) %>%

 step_normalize(all_numeric_predictors())

penguin_wf �� workflow() %>%

 add_model(penguin_model) %>%

 add_recipe(penguin_rec)

param_final ��

 extract_parameter_set_dials(penguin_model) %>%

 finalize(penguin_train)

38 / 39

Tidymodels: Xbgoost

• Bayesian Tuning

penguin_bayes �� tune_bayes(

 penguin_wf,

 resamples = penguin_folds,

 param_info = param_final,

 metrics = metric_set(accuracy),

 initial = 5,

 iter = 20,

 control = control_bayes(verbose = TRUE,

 no_improve = 5)

)

• Estimate model

final_model �� penguin_bayes %>% select_best(metric = "accuracy") %>% finalize_workflow(penguin_wf, .) %>%

 fit(data = penguin_train)

39 / 39

