UNIVERSITEIT

&q Stellenbosch
> UNIVERSITY
- IYUNIVESITHI

Deep Learning ¢
[Dr. Hanjo Odendaal]

The bible of machine learning 0

UNIVERSITEIT

e Focuses on understanding the relationship between input variables
(features) and output variables (responses).

Springer Series in Statistics

Trevor Hastie

Robert Tibshirani
o Supervised: Learning with labeled data (e.g., regression, Jerome Friedman

classification).
o Unsupervised: Learning from unlabeled data (e.g, clustering,
dimensionality reduction).

Data Mining, Inference, and Prediction

e Key Techniques:

o Linear Methods (e.g., Linear Regression, Logistic Regression)

o Nonlinear Methods (e.g., Decision Trees, SVMs, Neural Networks)

o Model Assessment & Selection (e.g., Cross-Validation, Bias-
Variance Tradeoff)

o Ensemble Methods (e.g., Bagging, Boosting, Random Forests)

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 2 /23

Introduction to prediction problems O e

In statistical modeling and machine learning, the core goal is often predicting an outcome y given inputs X:
y ~ f(X)
This can be unknown and complex (nonlinear, flexible) or specified with assumptions (linear, parametric).

Classical statistics - ("Is g different from zero?"):

e Focus on parameter estimation and inference.
e Models are often prescriptive: impose assumptions (e.g., linearity, normality).

Machine learning - "Can | predict y accurately from X?":

e Focus on prediction accuracy rather than interpretability.
e Models are often descriptive or agnostic: flexible function fitting without strong assumptions.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 3/23

From ML to DL e

Supervised ML Models: Deep Learning Models:
e Input-output mappings learned from labeled data. e Learn hierarchical representations automatically from
e Examples: LASSO (sparse linear models), Random raw input.
Forests, Boosting. e Networks are typically composed of multiple layers of
e Emphasize interpretability and often require neurons (nonlinear basis functions).
feature engineering, e Nonlinearities (e.g. sigmoids, aka "activation functions")
e Often use basis expansions (e.g. polynomials or allow flexible approximations of complex functions.
decision trees) to approximate f(z) e Require more data, computational power, and careful
tuning.

Imagine you're trying to approximate a curve (remember the Gradient Descent image) using Lego blocks. Ridge/Lasso has
fixed block, so it cannot 'learn' Boosting lets you choose blocks adaptively as you build. Neural nets not only let you learn
the best shapes, but also allow you to stack them in multiple layers, making intricate shapes possible.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 4/ 23

What are basis expansions? O His

A basis expansion is a way to approximate a complex function f(z) by combining simpler, known functions (called basis
functions) like building blocks.

e Fach hi(z) Is a basis function - e.g,, z, 22, sin(z), or more generally ¢x(z).
e 0, are weights that the model learns to best fit the data.

The idea Is:

We don't try to directly learn the complicated function f(z). Instead, we express it as a weighted sum of simpler
functions.

Boosting: Builds its basis functions as small decision trees (each T, (z) is a basis function).

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 5/ 23

Enter Deep Learning gt

Neural networks are basis expansion machines - but unlike LASSO or Boosting, they learn both the basis functions and
how to stack them.

fz) =) 6ro(z"Br) (1 hidden layer)
k

e o(-) is a nonlinear activation (e.g.,, sigmoid, tanh, ReLU).
e 3, are the learned weights defining each basis function.
e The network learns both the shape of hi(z) and how to combine them.

What makes it deep?

Neural networks build layers of basis expansions - each layer transforms the input and passes it forward:

Unlike boosting, which builds basis functions sequentially, deep learning composes them hierarchically . This enables it to
model very complex structures like language, vision and time series.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 6/23

(| Stellenbosch

Multilayer perceptron (MLP) R

f(z) = o® (W<3> @ (W<2> gy (W(l)x)>)

|npUt Layer (CU — [I]_,IQ,I?)]) tl r ¥ ‘ Output Layer
e These orange nodes are the input features z. I ‘ dary H;Ja SN AN)
e They are passed through the first layer via weights A Lo ‘ Lo
Hidden Layer 1 (gray circles: by, by, bs) e TG ‘ | o
. L s . Ho O A
e Fach neuron computes a linear combination: A AV
’ ""_ /Y)

zj = wj+ b,

e Then applies an activation function o (yellow
blocks).

e This gives the first hidden layer activations:
aV) = o(W W)

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 71/ 23

Multilayer perceptron (MLP) (st

UNIVERSITEIT

f(z) = o® (W<3> @ (W<2> gy (W(l)x)>)

Hlddeﬂ Layer 2 tl r ¥ Output Layer
e The activations a«V become the inputs to layer 2. o, ‘ | H;Ja "\""/
e The process repeats: linear combination — N S, g . ‘ :
. . . w'y, / b‘ :; a$1 + 'wvjl' aql |)
activation — new output a® = o(W @) | IR WA ANNAA
2 ‘ a'-2 w Jl’\ b’,)al \ ‘w", .' i { ‘ ,
Output Layer (blue circles: 0y, O,) oy, TNl ‘ |
’] aty ' by val, wia) 1
e The final layer computes a® = f(z) - the model’s . > G YV
’ v "_;_ i o
output.

e If this is a classification task, the last activation &%
could be a softmax or sigmoid.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 8/ 23

What is a Multi-Layer Perceptron (MLP)? D i

Think of an MLP as a Lego tower where each layer:

1. Builds a linear block (like regression)
2. Applies a nonlinear twist (activation)
3. Stacks this transformed block to the next layer

Linear combination: Activation function:
2=z w+b a=o(z)
e Like linear regression. e Nonlinear transformation: RelLU, sigmoid, etc.
e w are the weights (just like B). e Gives us a nonlinear building block (basis function).

e bis a bias term (intercept).

Where, z is like a prediction from linear regression. a is the non-linearly transformed output (the "activated" signal passed
forward).

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 9/23

UNIVERSITEIT

What is a Multi-Layer Perceptron (MLP)? o

Think of an MLP as a Lego tower where each layer:

1. Builds a linear block (like regression)
2. Applies a nonlinear twist (activation)
3. Stacks this transformed block to the next layer

Feedforward pass: Backpropagation (learning):

e Data flows forward layer by layer.

We compare the prediction ¢ with the true y.
Compute the loss (how wrong we are).

Then adjust weights w backward through the network
using gradients (chain rule).

e Each layer does: linear + activation, then passes
the output on.

This is how the model learns - like nudging Lego blocks
Into better positions.

MLP = A stack of linear regressions + nonlinear Lego adapters, trained via feedback.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 10 / 23

How Do Neural Networks Learn? Y e

UNIVERSITEIT

Once we compute the prediction ¢ via feedforward steps, we compare it to the actual y using a loss function.

Mean Squared Error (MSE) But w doesn't affect £ directly - it flows through:

1 = 7
EZE(y—?J)Q w—z—a=0(z) >y —L

L , o _ So we apply the chain rule:
We want to minimize this loss by adjusting the weights

and we do this via the Chain Rule which is core to 0L 0L 0y Oa 0z
"Backpropagation" To update weights, we use gradient Qw 0y Oa 0z Ou
descent:
we w—nok
77(‘_9w
e n = learning rate
e % = how changing w affects the loss

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 11/ 23

How does a weight affect the loss? O e

Although we want to understand how the loss £ depends on a weight w, the relationship isn't direct.

The weight w affects the linear combination z

Which passes through an activation function to become a
Which is used to compute the prediction j
Which is finally compared to the true y using the loss £

0L 0L 0§ O0Oa 0z
ow 0§ Oa 0z Ow

To understand how the loss £ depends on a weight w, we break it into parts:

or _ oc
ow 0y
0z
ow

da

5. (how activation changes with z) x

how loss changes with prediction) x 9 (how prediction changes with activation) x
Oa

(how z changes with w)
Each partis a link in the chain from output back to input.

This process is called backpropagation - it's just a smart way of using the chain rule to compute how each
weight in the network contributes to the final error, so we can adjust it and learn.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 12 /23

Putting it all together

@] Stellenbosch
UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

e The chain rule is a mathematical tool we use to compute gradients - i.e,, to find out how a change in a weight affects

the loss: 2&.
e Gradient descent is the optimization algorithm that uses those gradients to actually update the weights:

cw_nlk
Concept Role
Chain rule Helps us calculate the gradient of the loss w.rt. each weight

Backpropagation Systematic application of the chain rule across all layers

Gradient descent Uses those gradients to update the weights and learn

You can think of it like this:

e 4, Chain rule = the tool to compute how to fix each Lego block
e @& Gradient descent = the actual fixing action that adjusts them

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za)

13/ 23

UNIVERSITEIT

Activation fun(ctions) s

Sigmoid Tanh Step Function Softplus
)) B @
— 7 Y7 7 — I‘
4 . 0’ REN
= ,“_7 7y = ol (x) 374, 0 $=lw(’l+<’3‘)
ReLU Softsign ELU
0, X<0 “de_,]) ,%<0
% = X R = = X SR
» %30 CANTNPTR °
ginc Leaky ReLU

_sinlx)

y= max(oAx ,X) Y =% (+ound (sOFtpIUS (x)))

X

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 14 [23

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Activation fun(ctions) 1 s

Activation functions add nonlinearity to neural networks - essential for learning complex patterns. There are many, but
here are the top 5:

Name Formula When to Use
RelLU max(0, z) Most common default; fast to compute; good for hidden layers
Sigmoid Hfa_ﬁ For binary classification outputs; can squash inputs into [0, 1]
Tanh tanh(z) = ZZZ:Z Like sigmoid but outputs in [—-1,1]; used when zero-centered activations help
Softmax softmax(z;) = Z‘je, For multiclass classification output layer (probability distribution)
Leaky RelLU {Zw i zg Fixes "dead neuron" problem in RelLU; used in deeper networks

Rule of thumb: use ReLU in hidden layers, and sigmoid/softmax in output layers depending on the task.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 15/ 23

Activation fun(ctions) in Time-Series) B

Unlike feedforward networks, time series models reuse weights across time and maintain state, so the choice of activation
functions affects both:

e (1) How memory is updated, (2) How the network outputs a prediction at each time step

Function Formula Where It's Used Why It's Used
: : Keeps values in [-1,1], stabilizes gradients and
Tanh tanh(z) Hidden state update (h;) in RNNs, LSTM, GRU ,
memory over time
Siemoid . Gates in LSTM/GRU: forget, input, update, Outputs in [0,1] - acts like a soft switch to control
S e output memory flow
Occasionally in RNNs or hybrid models’ Promotes sparsity but risks unstable gradients in
RelLU max (0, z)
feedforward components long sequences
Linear) i No transformation - outputs real values directly
f(z) =z Output layer for regression/forecasting .
(None) (e.g, next value prediction)

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 16 / 23

IIIIIIIIII
IIIIIIIIIIII
IIIIIIIIIIII

Algo friends 42

Recurrent models: your time-aware algo friends i

Some problems have memory - where what came before matters. These models are built to handle sequences, like time
series, speech and text.

RNN (Recurrent Neural Network) GRU (Gated Recurrent Unit)
e Remembers short-term patterns e A more efficient cousin of LSTM
e Uses a hidden state updated at each time step: e Uses fewer gates (update & reset) to control memory
he = f(zs, hi 1) e Faster to train, good when data is limited or simpler

e Struggles with long-term memory due to vanishing

sradients These models don't just look at what is, but what

came before. Memory is built into their design.
LSTM (Long Short-Term Memory)

e Designed to capture long-term dependencies

e Has separate memory cell and multiple gates:
input, forget, output

e Great for tasks with complex or distant time

relationships (e.g., inflation regimes, language)
18 / 23

Recurrent models: your time-aware algo friends

RNN LSTM GRU

x' X. x'
o | sigmoid function tanh |hyperbolic tangent function @®» subtract from one
@ pointwise addition ® pointwise multiplication @ vector concatenation

https://medium.com/@hassaanidrees7/rnn-vs-Istm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb

Stellenbosch

UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za)

19 /23

https://medium.com/@hassaanidrees7/rnn-vs-lstm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb
https://medium.com/@hassaanidrees7/rnn-vs-lstm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb

UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

Understanding the RNN S

£ Lego Analogy: What the Math Means:

e Think of each time step as a Lego block.

e The RNN passes a memory block (k1) from one
block to the next. e The RNN computes:

e Inputs: z; (current input), h,_1 (previous hidden state)

e |t combines the current input z; and the past state

ht = tanh(Whht_l + WxCCt + b)
h;_1 to update its memory h;.

e Only one transformation = tanh squashes the result
But there's only one gate, a tanh nonlinearity. between [—1,1]

So If a pattern depends on far-back time steps, the Problem:
signal fades - this is the vanishing gradient problem.
e As we move through time, gradients shrink

e This makes learning long-term patterns very difficult

RNNs are elegant and simple, but forgetful - they're best for short-term memory tasks.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 20 / 23

Understanding the LSTM o

£ Lego Analogy: e Inputs: z;, he_1 (hidden state), C,_; (cell state)

e LSTM blocks are like deluxe Legos - they come with e |t uses three gates:

internal memory (C;) and multiple gates.
o Forget gate: o(Wix, + Urhi—1 + by)

e The cell decides: Decides what part of C;_; to forget
o Input gate: o(W;x; + U;hy_1 + b;)
o What to jorget from the past, Controls what new info enters the cell
o What new information to add, > Output gate: o(Woz; + Uy 1 + by)
o And what to output to the next step. Determines what to send out as h,
e This makes LSTM great at remembering patterns e Tanh is used to propose new content and to squash
over long distances - like stacking many blocks in outputs. The cell state C; carries memory directly
d TOw. through time, with minimal disruption

LSTMs are memory champions - they keep what matters, forget what doesn't and learn what to remember.

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 21/ 23

Understanding the GRU O H

£ Lego Analogy: e Inputs: z;, he_1 (previous hidden state). It uses two gates:
e GRU blocks are like streamlined Legos. Fewer parts, o Update gate: z; = o(W,z; + U,h;_1 + b,) Decides how
faster to assemble. much of the past to keep vs. overwrite

e GRUs combine the memory cell and hidden state (
h;) into one.
e Only two gates control everything:
o How much of the past to keep

° How much new info to add e Then it computes a candidate state:

o Reset gate: r, = o(W,z; + U hy—1 + b;)
Controls how much of the past to forget before
mixing with current input

GRUs are efficient learners - they blend he = tanh(Wizy + Up (74 - he_1) + bp)
memory and new info using just two gates,

making them fast and effective. * And the final output

ht:(l_zt)'ht—l+zt'i~7't

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 22 /23

(| Stellenbosch

From RNNs to Transformers #

Why Move Beyond RNNs? The Key Shift:
e RNNs, LSTMs and GRUs process sequences step-by- Memory = Attention
step Sequence order = Position encoding
e This makes them slow and hard to parallelize Step-by-step = Parallel processing

e They also struggle with very long sequences. Even

LSTMs forget eventually Why it matters:
e Transformers power ChatGPT, BERT, GPT and other

Enter Transformers:
modern Al models

e Transformers remove recurrence entirely e They're faster, scalable and better at learning long-range
e They process entire sequences at once using dependencies
attention

e Instead of remembering the past, they look at all
time steps directly

Cited ~180,000 times: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Economic and Management Sciences - EyeNzululwazi ngoQogosho noLawulo - Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 23 /23

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

