
Deep Learning

[Dr. Hanjo Odendaal]

• Focuses on understanding the relationship between input variables
(features) and output variables (responses).

◦ Supervised: Learning with labeled data (e.g., regression,
classi�cation).

◦ Unsupervised: Learning from unlabeled data (e.g., clustering,

dimensionality reduction).

• Key Techniques:

◦ Linear Methods (e.g., Linear Regression, Logistic Regression)

◦ Nonlinear Methods (e.g., Decision Trees, SVMs, Neural Networks)

◦ Model Assessment & Selection (e.g., Cross-Validation, Bias-
Variance Tradeoff)

◦ Ensemble Methods (e.g., Bagging, Boosting, Random Forests)

The bible of machine learning

2 / 23

Introduction to prediction problems

In statistical modeling and machine learning, the core goal is often predicting an outcome given inputs :

This can be unknown and complex (nonlinear, �exible) or speci�ed with assumptions (linear, parametric).

Classical statistics - ("Is different from zero?"):

• Focus on parameter estimation and inference.

• Models are often prescriptive: impose assumptions (e.g., linearity, normality).

Machine learning - "Can I predict accurately from ?":

• Focus on prediction accuracy rather than interpretability.

• Models are often descriptive or agnostic: �exible function �tting without strong assumptions.

y X

y ∼ f(X)

β

y X

3 / 23

Supervised ML Models:

• Input-output mappings learned from labeled data.

• Examples: LASSO (sparse linear models), Random
Forests, Boosting.

• Emphasize interpretability and often require

feature engineering.

• Often use basis expansions (e.g. polynomials or
decision trees) to approximate

Deep Learning Models:

• Learn hierarchical representations automatically from
raw input.

• Networks are typically composed of multiple layers of

neurons (nonlinear basis functions).

• Nonlinearities (e.g. sigmoids, aka "activation functions")

allow �exible approximations of complex functions.

• Require more data, computational power, and careful
tuning.

From ML to DL

Imagine you're trying to approximate a curve (remember the Gradient Descent image) using Lego blocks. Ridge/Lasso has
�xed block, so it cannot 'learn'. Boosting lets you choose blocks adaptively as you build. Neural nets not only let you learn

the best shapes, but also allow you to stack them in multiple layers, making intricate shapes possible.

f(x)

4 / 23

What are basis expansions?

A basis expansion is a way to approximate a complex function by combining simpler, known functions (called basis
functions) like building blocks.

• Each is a basis function - e.g., , , , or more generally .

• are weights that the model learns to best �t the data.

The idea is:

We don’t try to directly learn the complicated function . Instead, we express it as a weighted sum of simpler
functions.

Boosting: Builds its basis functions as small decision trees (each is a basis function).

f(x)

f(x) ≈
K

∑
k=1

hk(x)θk

hk(x) x x2 sin(x) ϕk(x)

θk

f(x)

Tm(x)

5 / 23

Enter Deep Learning

Neural networks are basis expansion machines - but unlike LASSO or Boosting, they learn both the basis functions and
how to stack them.

• is a nonlinear activation (e.g., sigmoid, tanh, ReLU).

• are the learned weights de�ning each basis function.

• The network learns both the shape of and how to combine them.

What makes it deep?

Neural networks build layers of basis expansions - each layer transforms the input and passes it forward:

Unlike boosting, which builds basis functions sequentially, deep learning composes them hierarchically . This enables it to

model very complex structures like language, vision and time series.

f(x) = ∑
k

θk σ(x⊤βk) (1 hidden layer)

σ(⋅)

βk

hk(x)

f(x) = σ(L)(W (L) ⋯ σ(2)(W (2) σ(1)(W (1)x)))

6 / 23

Input Layer ()

• These orange nodes are the input features .

• They are passed through the �rst layer via weights

.

Hidden Layer 1 (gray circles: , ,)

• Each neuron computes a linear combination:

• Then applies an activation function (yellow
blocks).

• This gives the �rst hidden layer activations:

Multilayer perceptron (MLP)

f(x) = σ(3) (W (3) σ(2) (W (2) σ(1) (W (1)x)))

x = [I1, I2, I3]

x

W (1)

b1 b2 b3

zj = x⊤wj + bj

σ

a(1) = σ(W (1)x)

7 / 23

Hidden Layer 2

• The activations become the inputs to layer 2.

• The process repeats: linear combination

activation new output

Output Layer (blue circles: ,)

• The �nal layer computes - the model’s
output.

• If this is a classi�cation task, the last activation
could be a softmax or sigmoid.

Multilayer perceptron (MLP)

f(x) = σ(3) (W (3) σ(2) (W (2) σ(1) (W (1)x)))

a(1)

→

→ a(2) = σ(W (2)a(1))

O1 O2

a(3) = f(x)

σ(L)

8 / 23

Linear combination:

• Like linear regression.

• are the weights (just like).

• is a bias term (intercept).

Activation function:

• Nonlinear transformation: ReLU, sigmoid, etc.

• Gives us a nonlinear building block (basis function).

What is a Multi-Layer Perceptron (MLP)?

Think of an MLP as a Lego tower where each layer:

�. Builds a linear block (like regression)
�. Applies a nonlinear twist (activation)
�. Stacks this transformed block to the next layer

Where, is like a prediction from linear regression. is the non-linearly transformed output (the "activated" signal passed
forward).

z = x⊤w + b

w β

b

a = σ(z)

z a

9 / 23

Feedforward pass:

• Data �ows forward layer by layer.

• Each layer does: linear + activation, then passes

the output on.

Backpropagation (learning):

• We compare the prediction with the true .

• Compute the loss (how wrong we are).

• Then adjust weights backward through the network
using gradients (chain rule).

• This is how the model learns - like nudging Lego blocks
into better positions.

What is a Multi-Layer Perceptron (MLP)?

Think of an MLP as a Lego tower where each layer:

�. Builds a linear block (like regression)
�. Applies a nonlinear twist (activation)
�. Stacks this transformed block to the next layer

MLP = A stack of linear regressions + nonlinear Lego adapters, trained via feedback.

ŷ y

w

10 / 23

Mean Squared Error (MSE)

We want to minimize this loss by adjusting the weights
and we do this via the Chain Rule which is core to
"Backpropagation". To update weights, we use gradient
descent:

• = learning rate

• = how changing affects the loss

But doesn’t affect directly - it �ows through:

So we apply the chain rule:

How Do Neural Networks Learn?

Once we compute the prediction via feedforward steps, we compare it to the actual using a loss function.ŷ y

L = (y − ŷ)21
2

w ← w − η
∂L

∂w

η

∂L
∂w

w

w L

w → z → a = σ(z) → ŷ → L

= ⋅ ⋅ ⋅
∂L

∂w

∂L

∂ŷ

∂ŷ

∂a

∂a

∂z

∂z

∂w

11 / 23

How does a weight affect the loss?

Although we want to understand how the loss depends on a weight , the relationship isn't direct.

• The weight affects the linear combination

• Which passes through an activation function to become

• Which is used to compute the prediction

• Which is �nally compared to the true using the loss

To understand how the loss depends on a weight , we break it into parts:

Each part is a link in the chain from output back to input.

This process is called backpropagation - it’s just a smart way of using the chain rule to compute how each
weight in the network contributes to the �nal error, so we can adjust it and learn.

L w

w z

a

ŷ

y L

= ⋅ ⋅ ⋅
∂L

∂w

∂L

∂ŷ

∂ŷ

∂a

∂a

∂z

∂z

∂w

L w

=∂L
∂w

(how loss changes with prediction) ×∂L
∂ŷ

(how prediction changes with activation) ×∂ŷ

∂a
(how activation changes with z) ×∂a

∂z

(how z changes with w)∂z

∂w

12 / 23

Putting it all together

• The chain rule is a mathematical tool we use to compute gradients - i.e., to �nd out how a change in a weight affects
the loss: .

• Gradient descent is the optimization algorithm that uses those gradients to actually update the weights:

Concept Role

Chain rule Helps us calculate the gradient of the loss w.r.t. each weight

Backpropagation Systematic application of the chain rule across all layers

Gradient descent Uses those gradients to update the weights and learn

You can think of it like this:

• Chain rule = the tool to compute how to �x each Lego block

• Gradient descent = the actual �xing action that adjusts them

∂L
∂w

w ← w − η
∂L

∂w

13 / 23

Activation fun(ctions)

https://se�ks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

14 / 23

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/
https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Activation fun(ctions)

Activation functions add nonlinearity to neural networks - essential for learning complex patterns. There are many, but
here are the top 5:

Name Formula When to Use

ReLU Most common default; fast to compute; good for hidden layers

Sigmoid For binary classi�cation outputs; can squash inputs into

Tanh Like sigmoid but outputs in ; used when zero-centered activations help

Softmax For multiclass classi�cation output layer (probability distribution)

Leaky ReLU Fixes "dead neuron" problem in ReLU; used in deeper networks

Rule of thumb: use ReLU in hidden layers, and sigmoid/softmax in output layers depending on the task.

max(0, x)

1
1+e−x [0, 1]

tanh(x) = ex−e−x

ex+e−x [−1, 1]

softmax(xi) = exi

∑j e
xj

{ x x > 0
αx x ≤ 0

15 / 23

Activation fun(ctions) in Time-Series

Unlike feedforward networks, time series models reuse weights across time and maintain state, so the choice of activation
functions affects both:

• (1) How memory is updated, (2) How the network outputs a prediction at each time step

Function Formula Where It's Used Why It's Used

Tanh Hidden state update () in RNNs, LSTM, GRU
Keeps values in , stabilizes gradients and

memory over time

Sigmoid
Gates in LSTM/GRU: forget, input, update,
output

Outputs in - acts like a soft switch to control
memory �ow

ReLU
Occasionally in RNNs or hybrid models’
feedforward components

Promotes sparsity but risks unstable gradients in
long sequences

Linear
(None)

Output layer for regression/forecasting
No transformation - outputs real values directly
(e.g., next value prediction)

tanh(x) ht

[−1, 1]

1
1+e−x

[0, 1]

max(0, x)

f(x) = x

16 / 23

Algo friends ⚒

RNN (Recurrent Neural Network)

• Remembers short-term patterns

• Uses a hidden state updated at each time step:

• Struggles with long-term memory due to vanishing
gradients

LSTM (Long Short-Term Memory)

• Designed to capture long-term dependencies

• Has separate memory cell and multiple gates:
input, forget, output

• Great for tasks with complex or distant time

relationships (e.g., in�ation regimes, language)

GRU (Gated Recurrent Unit)

• A more ef�cient cousin of LSTM

• Uses fewer gates (update & reset) to control memory

• Faster to train, good when data is limited or simpler

These models don’t just look at what is, but what

came before. Memory is built into their design.

Recurrent models: your time-aware algo friends

Some problems have memory - where what came before matters. These models are built to handle sequences, like time
series, speech and text.

ht = f(xt, ht−1)

18 / 23

Recurrent models: your time-aware algo friends

https://medium.com/@hassaanidrees7/rnn-vs-lstm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb

19 / 23

https://medium.com/@hassaanidrees7/rnn-vs-lstm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb
https://medium.com/@hassaanidrees7/rnn-vs-lstm-vs-gru-a-comprehensive-guide-to-sequential-data-modeling-03aab16647bb

 Lego Analogy:

• Think of each time step as a Lego block.

• The RNN passes a memory block () from one
block to the next.

• It combines the current input and the past state

 to update its memory .

But there’s only one gate, a tanh nonlinearity.

So if a pattern depends on far-back time steps, the
signal fades - this is the vanishing gradient problem.

What the Math Means:

• Inputs: (current input), (previous hidden state)

• The RNN computes:

• Only one transformation → tanh squashes the result
between

Problem:

• As we move through time, gradients shrink

• This makes learning long-term patterns very dif�cult

Understanding the RNN

RNNs are elegant and simple, but forgetful - they're best for short-term memory tasks.

ht−1

xt

ht−1 ht

xt ht−1

ht = tanh(Whht−1 + Wxxt + b)

[−1, 1]

20 / 23

 Lego Analogy:

• LSTM blocks are like deluxe Legos - they come with
internal memory () and multiple gates.

• The cell decides:

◦ What to forget from the past,

◦ What new information to add,

◦ And what to output to the next step.

• This makes LSTM great at remembering patterns

over long distances - like stacking many blocks in
a row.

• Inputs: , (hidden state), (cell state)

• It uses three gates:

◦ Forget gate:
Decides what part of to forget

◦ Input gate:
Controls what new info enters the cell

◦ Output gate:
Determines what to send out as

• Tanh is used to propose new content and to squash
outputs. The cell state carries memory directly
through time, with minimal disruption

Understanding the LSTM

LSTMs are memory champions - they keep what matters, forget what doesn't and learn what to remember.

Ct

xt ht−1 Ct−1

σ(Wfxt + Ufht−1 + bf)

Ct−1

σ(Wixt + Uiht−1 + bi)

σ(Woxt + Uoht−1 + bo)

ht

Ct

21 / 23

 Lego Analogy:

• GRU blocks are like streamlined Legos. Fewer parts,
faster to assemble.

• GRUs combine the memory cell and hidden state (
) into one.

• Only two gates control everything:

◦ How much of the past to keep

◦ How much new info to add

GRUs are ef�cient learners - they blend
memory and new info using just two gates,
making them fast and effective.

• Inputs: , (previous hidden state). It uses two gates:

◦ Update gate: Decides how
much of the past to keep vs. overwrite

◦ Reset gate:
Controls how much of the past to forget before
mixing with current input

• Then it computes a candidate state:

• And the �nal output:

Understanding the GRU

ht

xt ht−1

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

~
ht = tanh(Whxt + Uh(rt ⋅ ht−1) + bh)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ ~
ht

22 / 23

Why Move Beyond RNNs?

• RNNs, LSTMs and GRUs process sequences step-by-
step

• This makes them slow and hard to parallelize

• They also struggle with very long sequences. Even

LSTMs forget eventually

Enter Transformers:

• Transformers remove recurrence entirely

• They process entire sequences at once using
attention

• Instead of remembering the past, they look at all
time steps directly

The Key Shift:

Memory → Attention
Sequence order → Position encoding
Step-by-step → Parallel processing

Why it matters:

• Transformers power ChatGPT, BERT, GPT and other
modern AI models

• They're faster, scalable and better at learning long-range
dependencies

From RNNs to Transformers

Cited ~180,000 times: https://proceedings.neurips.cc/paper_�les/paper/2017/�le/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

23 / 23

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

