

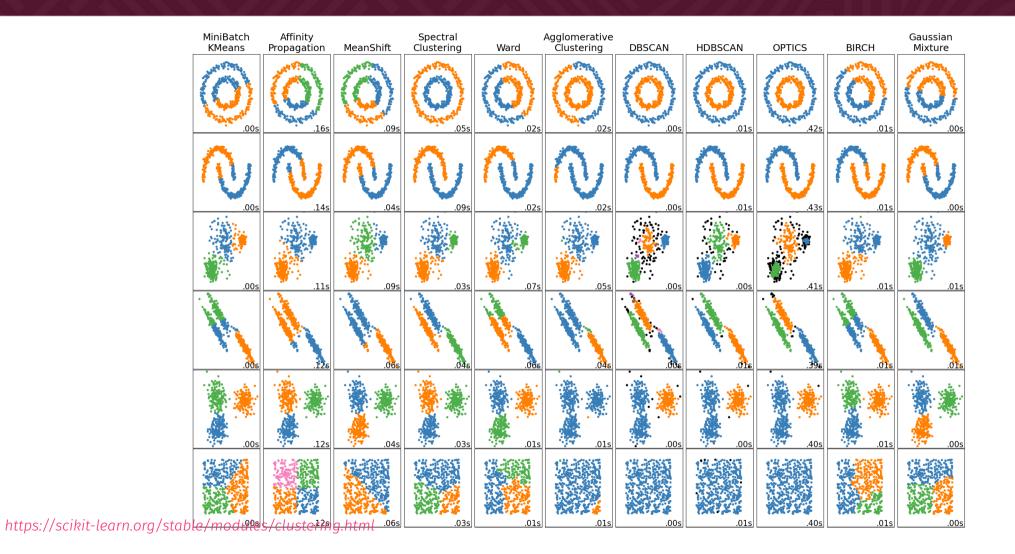
What is unsupervised learning?

- ullet We only observe the **inputs** X there are **no** labels y telling us what the structure should be.
- The **goal** is to let the model explore how the data might **fit together**, like sorting **Lego blocks**:
 - which pieces cluster together?
 - which ones are out of place?
 - o do they form repeating shapes or patterns?
- Unlike supervised learning, where we follow instructions to build a model, here we let the blocks guide us - discovering patterns that emerge from their shape, size and colour.

Turn raw data into a map of itself - let the data tell its own story

Domain	Example objective	
Marketing	Customer segmentation for targeting & pricing	
Finance	Detect unusual transactions (fraud / AML)	
Genomics	Cluster gene-expression profiles	
Manufacturing	Group sensor streams to spot fault patterns	
NLP / Search	Topic modelling, word embeddings	
Recommender	Cold-start grouping of new users/items	

Horses for courses



Clustering Families: The Landscape

Unsupervised clustering algorithms can be grouped by their *core strategy*:

- Similarity-based: assign points to nearest cluster centers
- Connectivity-based: merge or split based on distance chains
- Model-based: fit probabilistic distributions to the data
- Density-based: find dense areas of points, separate sparse regions
- **Dim. Reduction + Clustering**: learn a low-dimensional structure before grouping

Family	Prototype	Key Idea
Similarity-based	K-Means	Minimize within-cluster variance
Connectivity- based	Agglomerative	Build a tree via pairwise distances
Model-based	Gaussian Mixtures	Fit data as weighted combinations of densities
Density-based	DBSCAN, HDBSCAN	Clusters = high-density areas separated by gaps
Dimensionality- driven	PCA, t-SNE, UMAP	Reduce dimension, then cluster hidden structure

K-Means Clustering

Partition n observations into K clusters by minimizing the within-cluster sum of squares:

$$\min_{\{oldsymbol{\mu}_k\}} \sum_{i=1}^n \left\|x_i - \mu_{c(i)}
ight\|^2$$

ullet μ_k is the centroid of cluster $k,\,c(i)$ is the cluster assigned to point x_i

Algorithm (Lloyds method)

- 1. Initialise: Select K initial centroids
- 2. Assign: Allocate each point to its nearest centroid
- 3. **Update**: Recalculate each centroid as the **mean of assigned points**
- 4. Repeat until convergence (no change in assignments or centroids)

Key Hyperparameters & Considerations

- K: Number of clusters (use elbow method, silhouette score, gap statistic to choose)
- Initialisation: Random vs. **k-means++** (more stable)
- Scaling: All features should be on comparable scales (standardization usually essential)
- Distance metric: Euclidean (default), but variants exist for others

⚠ K-means assumes convex, equally-sized clusters and is sensitive to outliers.

K-Means Clustering

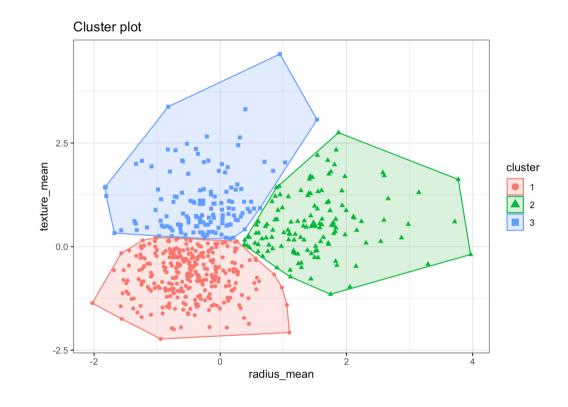
Partition n observations into K clusters by minimizing the within-cluster sum of squares:

$$\min_{\{oldsymbol{\mu}_k\}} \sum_{i=1}^n \left\|x_i - \mu_{c(i)}
ight\|^2$$

ullet μ_k is the centroid of cluster $k,\,c(i)$ is the cluster assigned to point x_i

Algorithm (Lloyds method)

- 1. Initialise: Select K initial centroids
- 2. Assign: Allocate each point to its nearest centroid
- 3. **Update**: Recalculate each centroid as the **mean of assigned points**
- 4. Repeat until convergence (no change in assignments or centroids)



The Hard Boundary Problem

What is it?

- In hard clustering, each data point is assigned to exactly one cluster.
- There's *no overlap*, no uncertainty the assignment is binary:
 - You belong to Cluster 2, full stop.
- In k-means, this is due to the assignment step:
 - Each point is allocated to its nearest centroid (Euclidean distance).
 - Even if a point lies *equally between two clusters*, it must pick one.
 - There's no fuzzy or probabilistic interpretation.

When is it a problem?

- When **clusters overlap**, e.g., noisy or continuous domains like
 - Economics
 - Genomics
 - Natural language
- When you want to model *uncertainty* in membership (e.g. in customer segments)
- When points lie near boundaries, risking unstable or misleading assignments

This can distort the cluster structure, especially at the edges.

Hierarchical Clustering

Agglomerative clustering builds a hierarchy of clusters bottom-up

- 1. Start with each point in its own cluster
- 2. Iteratively **merge** the two **closest** clusters
- 3. Continue until all points are merged into one large cluster

The result is a **dendrogram** - a tree showing how clusters combine at various distance thresholds.

A horizontal cut through the tree yields **flat clusters**. \P No need to pre-specify K - choose it visually or set a height cut-off, but you have to set linkage criteria:

- Single (minimum distance)
- Complete (maximum distance)
- Average
- Ward (minimizes total within-cluster variance)

Key Properties & Considerations

- No need to define K in advance
- Works well when the goal is to explore or visualize nested relationships

Limitations:

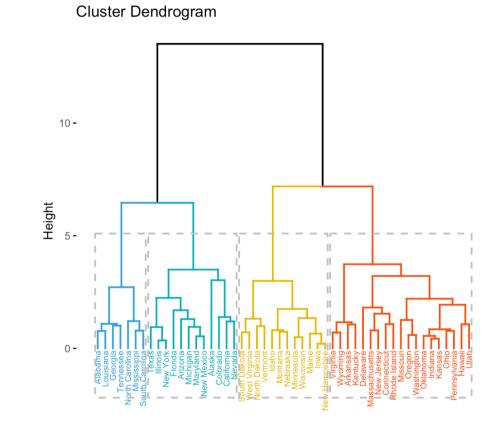
- Sensitive to noise and feature scaling
- ullet Requires a full distance matrix: memory = $O(n^2)$

⚠ Once two points are merged, they cannot be separated. Ideal when interpretability and structure are more important than scalability.

Hierarchical Clustering

This plot is a **dendrogram**, the standard visual output of hierarchical clustering.

- Each ½ leaf at the bottom is an individual data point (here: US states).
- As you move *upward*, points are merged into clusters based on proximity.
- The **height** of each merge reflects the **distance** (or dissimilarity) between merged clusters.
- The **coloured branches** show a specific number of clusters in this case, 4 distinct groups.
- The dashed horizontal line (cut height) determines where to "slice" the tree to get flat clusters.



Model-Based Clustering (Gaussian Mixtures)

Model-based clustering assumes that data is generated from a **mixture of distributions** - one per cluster.

For K clusters, each point is assumed to come from a weighted density:

$$p(x_i) = \sum_{k=1}^K \pi_k \, f_k(x_i \mid heta_k)$$

- π_k : mixing proportion, prior probability of cluster k
- f_k : probability density (often multivariate Gaussian)
- θ_k : parameters of cluster k (mean, covariance)

The model is estimated via the **Expectation-Maximization (EM)** algorithm:

1. **E-step**: compute soft assignments

$$\gamma_{ik} = \Pr(z_i = k \mid x_i)$$

2. **M-step**: update parameters π_k , θ_k

Model-Based Clustering (Gaussian Mixtures)

Imagine the data as being built from K different Lego kits.

- Each kit has its own shape, color and size a different distribution.
- Every data point is made by **mixing pieces** from these kits (we don't know which one exactly, just the probabilities).

The EM algorithm is like playing a two-step Lego guessing game:

- 1. E-step: For each Lego piece (data point), guess how likely it came from each kit
 - This block looks 70% like it came from Kit A, 30% from Kit B.
- 2. **M-step**: Use those guesses to rebuild better versions of the kits
 - Let's shift Kit A's blueprint closer to the pieces that look like it.

Repeat until the kits explain the pieces well.

This gives **soft clustering**: points belong to clusters in degrees, not absolutes.

Nice visualisations: https://ryanwingate.com/intro-to-machine-learning/unsupervised/gaussian-mixture-models-and-cluster-validation/

Evaluating Clusters: Internal Indices

Internal validation metrics help us evaluate clustering without labels. One of the most widely used is the Silhouette coefficient:

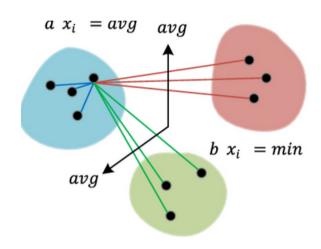
 Measures how well each point fits within its cluster. Defined for each point as: Similarity to own cluster - similarity to nearest other cluster

Ranges from -1 to 1:

- Close to 1: well-matched to its cluster
- Near 0: close to the decision boundary
- Below 0: probably in the wrong cluster

Silhouette can be averaged over:

- Fach cluster
- The entire dataset (global score)



$$s x_i = \frac{b x_i - a x_i}{\max b x_i, a x_i}$$

(a) Silhouette coefficient

Evaluating Clusters: Internal Indices

Caveats and Cautions

- Silhouette prefers compact, spherical clusters
- Not reliable for **non-convex shapes** (e.g. rings, spirals)
- ullet Adding more clusters (larger K) doesn't always improve silhouette
- Over-segmentation leads to clusters that are too small and tight, but poorly separated
- DBSCAN often gets unfairly penalized:
 - No concept of "noise" in Silhouette
 - Irregular cluster shapes lead to low scores

Alternative for DBSCAN

- Use **DBCV** (Density-Based Clustering Validation)
- It accounts for variable density and presence of noise

Silhouette works well when your goal is to find **well-separated, round-ish groups** - not when structure is complex.

Why internal validation?

When we don't have ground-truth labels, we use **internal indices** to evaluate: How well does the clustering structure fit the data itself?

These indices use only:

- The distances between points
- The distribution of clusters
- The overall compactness and separation

They help us:

- Choose the number of clusters
- Compare different clustering algorithms
- Avoid overfitting or underfitting the structure

No single index is perfect - each one captures a different intuition about "good" clustering.

Index	Range	Interpretation
Silhouette Index	$[-1,\ 1]$	Measures how well a point fits within its cluster vs others
Calinski- Harabasz	$[0, \infty)$	Ratio of between-cluster to within-cluster dispersion
BIC (for GMM)	∝ log- likelihood	Penalised likelihood: trade-off between fit and complexity
Dunn Index	$[0, \infty)$	Ratio of min inter-cluster to max intra-cluster distance

Dimension Reduction

Dimension Reduction in Unsupervised Learning

Why reduce dimensions?

- In high-dimensional data, patterns become harder to detect:
 - Clusters are harder to separate
 - Distance measures become unstable
 - Visualisation becomes impossible

Dimension reduction:

- Projects data to a lower-dimensional space
- Preserves important variance or structure
- Supports clustering, anomaly detection, and interpretation

Key Techniques

- PCA (Principal Component Analysis)
 - Works on continuous variables
 - Finds linear combinations (components) that capture maximum variance
- MCA (Multiple Correspondence Analysis)
 - Used for *categorical* variables
 - Identifies underlying structure by analysing patterns of co-occurrence
- MFA (Multiple Factor Analysis)
 - Handles mixed data types (quant + qual blocks)
 - Balances the influence of different variable groups
 - Ideal for complex surveys, socio-economic data etc 16 / 20

Principal Component Analysis (PCA)

PCA finds a new set of **orthogonal axes** (principal components) that:

- Are linear combinations of the original variables
- Capture the maximum variance in the data

Given centered data matrix X, PCA solves:

$$\max_{\mathbf{w}} \quad \operatorname{Var}(X\mathbf{w}) \quad \text{subject to} \quad \|\mathbf{w}\| = 1$$

The solution gives:

- ullet Eigenvectors of the **covariance matrix** of X
- Eigenvalues = variance explained by each component

You can project the data onto the first k components:

$$Z = XW_k$$

Where W_k contains the top k eigenvectors.

- PCA is like **rotating the coordinate system** to align with the directions where the data spreads out the most.
- It finds **hidden axes** of variation and discards directions with minimal change.
- Think of it as:

Rewriting the data using fewer, more informative dimensions.

Principal Component Analysis (PCA)

Why use it?

- Reduce dimensionality without losing much information (Think curse of dimensionality)
- Visualize high-dimensional data (e.g. in 2D)
- Pre-process for clustering or anomaly detection
- Remove multicollinearity in modeling

⚠ PCA assumes **linearity** and is sensitive to **scaling** Always standardize before applying it.

? Is PCA just OLS?

No, but they are related.

- ullet OLS predicts y from X: it maximizes explained variance in the dependent variable
- PCA doesn't care about y: it finds directions that maximize variance in \$X\$ itself

So PCA is more like *unsupervised regression* - but without a target.

Multiple Correspondence Analysis (MCA)

MCA is the counterpart of PCA for categorical variables.

- It operates on a **complete disjunctive table**: each category of a variable becomes a binary column.
- MCA decomposes the inertia (i.e., variance) in this table using singular value decomposition (SVD).

Steps:

- 1. Convert categorical variables to 0/1 indicator matrix $oldsymbol{Z}$
- 2. Compute the **correspondence matrix** (normalized frequencies)
- 3. Apply SVD: $Z^* = U \Sigma V^{ op}$

Principal components are derived from the left singular vectors U, weighted by Σ .

The Intuition

- MCA reduces many-category categorical data to a few synthetic dimensions.
- It uncovers **underlying relationships** between levels of variables, e.g.:

People who prefer brand A also tend to buy product X and live in region Y.

Think of it as:

Letting the categories cluster and co-occur naturally in a low-dimensional space.

Multiple Correspondence Analysis (MCA)

Why use it?

- Dimensionality reduction for survey, demographic, or choice data
- Pre-processing step for clustering with categorical inputs
- Visualize associations between variables and categories

Like PCA, MCA is *unsupervised* and assumes linear associations in indicator space.

