
Unsupervised ML ⚇

[Dr. Hanjo Odendaal]

• We only observe the inputs - there are no
labels telling us what the structure should be.

• The goal is to let the model explore how the data
might �t together, like sorting Lego blocks:

◦ which pieces cluster together?

◦ which ones are out of place?

◦ do they form repeating shapes or patterns?

• Unlike supervised learning, where we follow
instructions to build a model, here we let the

blocks guide us - discovering patterns that emerge
from their shape, size and colour.

Turn raw data into a map of itself - let the data
tell its own story

Domain Example objective

Marketing
Customer segmentation for targeting &
pricing

Finance Detect unusual transactions (fraud / AML)

Genomics Cluster gene-expression pro�les

Manufacturing Group sensor streams to spot fault patterns

NLP / Search Topic modelling, word embeddings

Recommender Cold-start grouping of new users/items

What is unsupervised learning?

X

y

2 / 20

Horses for courses

https://scikit-learn.org/stable/modules/clustering.html

3 / 20

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

Unsupervised clustering algorithms can be grouped by
their core strategy:

• Similarity-based: assign points to nearest cluster
centers

• Connectivity-based: merge or split based on

distance chains

• Model-based: �t probabilistic distributions to the
data

• Density-based: �nd dense areas of points,
separate sparse regions

• Dim. Reduction + Clustering: learn a low-
dimensional structure before grouping

Family Prototype Key Idea

Similarity-based K-Means
Minimize within-cluster
variance

Connectivity-
based

Agglomerative
Build a tree via pairwise
distances

Model-based
Gaussian
Mixtures

Fit data as weighted
combinations of
densities

Density-based
DBSCAN,
HDBSCAN

Clusters = high-density
areas separated by gaps

Dimensionality-
driven

PCA, t-SNE,
UMAP

Reduce dimension, then
cluster hidden structure

Clustering Families: The Landscape

4 / 20

Partition observations into clusters by minimizing
the within-cluster sum of squares:

• is the centroid of cluster , is the cluster
assigned to point

Algorithm (Lloyds method)

�. Initialise: Select initial centroids

�. Assign: Allocate each point to its nearest centroid
�. Update: Recalculate each centroid as the mean of

assigned points
�. Repeat until convergence (no change in

assignments or centroids)

Key Hyperparameters & Considerations

• : Number of clusters (use elbow method, silhouette
score, gap statistic to choose)

• Initialisation: Random vs. k-means++ (more stable)

• Scaling: All features should be on comparable scales

(standardization usually essential)

• Distance metric: Euclidean (default), but variants exist for
others

 K-means assumes convex, equally-sized
clusters and is sensitive to outliers.

K-Means Clustering

n K

min
{μk}

n

∑
i=1

∥∥xi − μc(i)
∥∥

2

μk k c(i)
xi

K

K

5 / 20

Partition observations into clusters by minimizing
the within-cluster sum of squares:

• is the centroid of cluster , is the cluster
assigned to point

Algorithm (Lloyds method)

�. Initialise: Select initial centroids

�. Assign: Allocate each point to its nearest centroid
�. Update: Recalculate each centroid as the mean of

assigned points
�. Repeat until convergence (no change in

assignments or centroids)

K-Means Clustering

n K

min
{μk}

n

∑
i=1

∥∥xi − μc(i)
∥∥

2

μk k c(i)
xi

K

6 / 20

What is it?

• In hard clustering, each data point is assigned to
exactly one cluster.

• There's no overlap, no uncertainty - the
assignment is binary:

You belong to Cluster 2, full stop.

• In k-means, this is due to the assignment step:

◦ Each point is allocated to its nearest centroid
(Euclidean distance).

◦ Even if a point lies equally between two
clusters, it must pick one.

◦ There's no fuzzy or probabilistic interpretation.

When is it a problem?

• When clusters overlap, e.g., noisy or continuous domains
like:

◦ Economics

◦ Genomics

◦ Natural language

• When you want to model uncertainty in membership (e.g.
in customer segments)

• When points lie near boundaries, risking unstable or
misleading assignments

This can distort the cluster structure, especially at

the edges.

The Hard Boundary Problem

7 / 20

Agglomerative clustering builds a hierarchy of clusters
bottom-up

�. Start with each point in its own cluster
�. Iteratively merge the two closest clusters
�. Continue until all points are merged into one large

cluster

The result is a dendrogram - a tree showing how
clusters combine at various distance thresholds.

A horizontal cut through the tree yields �at clusters.
No need to pre-specify - choose it visually or set a
height cut-off, but you have to set linkage criteria:

• Single (minimum distance)

• Complete (maximum distance)

• Average

• Ward (minimizes total within-cluster variance)

Key Properties & Considerations

• No need to de�ne in advance

• Works well when the goal is to explore or visualize
nested relationships

Limitations:

• Sensitive to noise and feature scaling

• Requires a full distance matrix: memory =

 Once two points are merged, they cannot be

separated. Ideal when interpretability and
structure are more important than scalability.

Hierarchical Clustering

K

K

O(n2)

8 / 20

This plot is a dendrogram, the standard visual output
of hierarchical clustering.

• Each leaf at the bottom is an individual data
point (here: US states).

• As you move upward, points are merged into

clusters based on proximity.

• The height of each merge re�ects the distance (or
dissimilarity) between merged clusters.

• The coloured branches show a speci�c number of
clusters - in this case, 4 distinct groups.

• The dashed horizontal line (cut height) determines
where to "slice" the tree to get �at clusters.

Hierarchical Clustering

9 / 20

Model-based clustering assumes that data is generated
from a mixture of distributions - one per cluster.

For clusters, each point is assumed to come from a
weighted density:

• : mixing proportion, prior probability of cluster

• : probability density (often multivariate
Gaussian)

• : parameters of cluster (mean, covariance)

The model is estimated via the Expectation-Maximization
(EM) algorithm:

�. E-step: compute soft assignments

�. M-step: update parameters ,

Model-Based Clustering (Gaussian Mixtures)

K

p(xi) =
K

∑
k=1

πk fk(xi ∣ θk)

πk k

fk

θk k

γik = Pr(zi = k ∣ xi)

πk θk

10 / 20

Model-Based Clustering (Gaussian Mixtures)

Imagine the data as being built from K different Lego kits.

• Each kit has its own shape, color and size - a different distribution.

• Every data point is made by mixing pieces from these kits (we don't know which one exactly, just the probabilities).

The EM algorithm is like playing a two-step Lego guessing game:

�. E-step: For each Lego piece (data point), guess how likely it came from each kit

This block looks 70% like it came from Kit A, 30% from Kit B.

�. M-step: Use those guesses to rebuild better versions of the kits

Let's shift Kit A's blueprint closer to the pieces that look like it.

Repeat until the kits explain the pieces well.

This gives soft clustering: points belong to clusters in degrees, not absolutes.
Nice visualisations: https://ryanwingate.com/intro-to-machine-learning/unsupervised/gaussian-mixture-models-and-cluster-validation/

11 / 20

https://ryanwingate.com/intro-to-machine-learning/unsupervised/gaussian-mixture-models-and-cluster-validation/
https://ryanwingate.com/intro-to-machine-learning/unsupervised/gaussian-mixture-models-and-cluster-validation/

 When we don't have ground
truth...

Internal validation metrics help us evaluate clustering
without labels. One of the most widely used is the
Silhouette coef�cient:

• Measures how well each point �ts within its
cluster. De�ned for each point as: Similarity to own

cluster - similarity to nearest other cluster

Ranges from −1 to 1:

• Close to 1: well-matched to its cluster

• Near 0: close to the decision boundary

• Below 0: probably in the wrong cluster

Silhouette can be averaged over:

• Each cluster

• The entire dataset (global score)

Evaluating Clusters: Internal Indices

12 / 20

Evaluating Clusters: Internal Indices

Caveats and Cautions

• Silhouette prefers compact, spherical clusters

• Not reliable for non-convex shapes (e.g. rings, spirals)

• Adding more clusters (larger) doesn’t always improve silhouette

• Over-segmentation leads to clusters that are too small and tight, but poorly separated

• DBSCAN often gets unfairly penalized:

◦ No concept of "noise" in Silhouette

◦ Irregular cluster shapes lead to low scores

Alternative for DBSCAN

• Use DBCV (Density-Based Clustering Validation)

• It accounts for variable density and presence of noise

Silhouette works well when your goal is to �nd well-separated, round-ish groups - not when structure is

complex.

K

13 / 20

When we don't have ground-truth labels, we use
internal indices to evaluate: How well does the
clustering structure �t the data itself?

These indices use only:

• The distances between points

• The distribution of clusters

• The overall compactness and separation

They help us:

• Choose the number of clusters

• Compare different clustering algorithms

• Avoid over�tting or under�tting the structure

No single index is perfect - each one captures a
different intuition about "good" clustering.

Index Range Interpretation

Silhouette
Index

Measures how well a point �ts
within its cluster vs others

Calinski-
Harabasz

Ratio of between-cluster to
within-cluster dispersion

BIC (for
GMM)

 log-
likelihood

Penalised likelihood: trade-off
between �t and complexity

Dunn Index
Ratio of min inter-cluster to

max intra-cluster distance

Why internal validation?

[−1, 1]

[0, ∞)

∝

[0, ∞)

14 / 20

Dimension Reduction

Why reduce dimensions?

• In high-dimensional data, patterns become harder
to detect:

◦ Clusters are harder to separate

◦ Distance measures become unstable

◦ Visualisation becomes impossible

Dimension reduction:

• Projects data to a lower-dimensional space

• Preserves important variance or structure

• Supports clustering, anomaly detection, and
interpretation

Key Techniques

• PCA (Principal Component Analysis)

◦ Works on continuous variables

◦ Finds linear combinations (components) that
capture maximum variance

• MCA (Multiple Correspondence Analysis)

◦ Used for categorical variables

◦ Identi�es underlying structure by analysing patterns

of co-occurrence

• MFA (Multiple Factor Analysis)

◦ Handles mixed data types (quant + qual blocks)

◦ Balances the in�uence of different variable groups

◦ Ideal for complex surveys, socio-economic data etc

Dimension Reduction in Unsupervised Learning

16 / 20

PCA �nds a new set of orthogonal axes (principal
components) that:

• Are linear combinations of the original variables

• Capture the maximum variance in the data

Given centered data matrix , PCA solves:

The solution gives:

• Eigenvectors of the covariance matrix of

• Eigenvalues = variance explained by each
component

You can project the data onto the �rst components:

Where contains the top eigenvectors.

• PCA is like rotating the coordinate system to align with
the directions where the data spreads out the most.

• It �nds hidden axes of variation and discards directions

with minimal change.

• Think of it as:

Rewriting the data using fewer, more
informative dimensions.

Principal Component Analysis (PCA)

X

max
w

Var(Xw) subject to ∥w∥ = 1

X

k

Z = XWk

Wk k

17 / 20

Why use it?

• Reduce dimensionality without losing much
information (Think curse of dimensionality)

• Visualize high-dimensional data (e.g. in 2D)

• Pre-process for clustering or anomaly detection

• Remove multicollinearity in modeling

 PCA assumes linearity and is sensitive to scaling
Always standardize before applying it.

 Is PCA just OLS?

No, but they are related.

• OLS predicts from : it maximizes explained variance
in the dependent variable

• PCA doesn't care about : it �nds directions that
maximize variance in X itself

So PCA is more like unsupervised regression - but without a

target.

Principal Component Analysis (PCA)

y X

y

18 / 20

MCA is the counterpart of PCA for categorical variables.

• It operates on a complete disjunctive table: each
category of a variable becomes a binary column.

• MCA decomposes the inertia (i.e., variance) in this
table using singular value decomposition (SVD).

Steps:

�. Convert categorical variables to 0/1 indicator

matrix
�. Compute the correspondence matrix (normalized

frequencies)
�. Apply SVD:

Principal components are derived from the left singular
vectors , weighted by .

The Intuition

• MCA reduces many-category categorical data to a few
synthetic dimensions.

• It uncovers underlying relationships between levels of
variables, e.g.:

People who prefer brand A also tend to buy
product X and live in region Y.

• Think of it as:

Letting the categories cluster and co-occur

naturally in a low-dimensional space.

Multiple Correspondence Analysis (MCA)

Z

Z∗ = UΣV ⊤

U Σ

19 / 20

Why use it?

• Dimensionality reduction for survey, demographic,
or choice data

• Pre-processing step for clustering with categorical
inputs

• Visualize associations between variables and
categories

Like PCA, MCA is unsupervised and assumes
linear associations in indicator space.

Multiple Correspondence Analysis (MCA)

20 / 20

